Advertisement

Russian Chemical Bulletin

, 59:2259 | Cite as

Tris(1-alkylindol-3-yl)methylium salts as a novel class of antitumor agents

  • E. V. Stepanova
  • A. A. Shtil’
  • S. N. Lavrenov
  • V. M. Bukhman
  • A. N. Inshakov
  • E. P. Mirchink
  • A. S. Trenin
  • O. A. Galatenko
  • E. B. Isakova
  • V. A. Glazunova
  • L. G. Dezhenkova
  • E. Sh. Solomko
  • E. E. Bykov
  • M. N. Preobrazhenskaya
Full Articles

Abstract

Tris(1-alkylindol-3-yl)methanes were obtained and oxidized into tris(1-alkylindol-3-yl)methylium salts. The resulting salts are more toxic to cultured tumor cells than to non-tumor ones. The cytotoxicity of tris(1-alkylindol-3-yl)methylium salts depends on the length of the substituent at the N atom of the heterocycle, increasing from an N-unsubstituted derivative toward N-butyl- and N-pentyl derivatives. A further increase in the length of the N-alkyl substituent lowers the cytotoxicity. The cytotoxicity of tris(1-alkylindol-3-yl)methylium salts for tumor cells correlates with their antibacterial and antifungal activity. Tris(1-alkylindol-3-yl)methylium salts produced a cytocide effect on Gram-positive microorganisms and the most active compounds, on Gram-negative microorganisms as well. Similar patterns of the structure—activity relationship of N-alkylated tris(indol-3-yl)methylium derivatives, which was observed for various lines of tumor cells, bacteria, and fungi, suggest the general character of the mechanisms of the death of prokaryotic and eukaryotic cells induced by these compounds.

Key words

antitumor agents tris(1-alkylindol-3-yl)methanes tris(1-alkylindol-3-yl)-methylium salts propeller compounds cytotoxicity turbomycin A antibacterial activity antifungal activity 

References

  1. 1.
    R. Dothager, K. S. Putt, B. J. Alien, B. J. Leslie, V. Nesterenko, P. J. Hergenrother, J. Am. Chem. Soc., 2005, 127, 8686.CrossRefGoogle Scholar
  2. 2.
    R. Palchaudhuri, V. Nesterenko, P. J. Hergenrother, J. Am. Chem. Soc., 2008, 130, 10274.CrossRefGoogle Scholar
  3. 3.
    R. Palchaudhuri, P. J. Hergenrother, Bioorg. Med. Chem. Lett., 2008, 18, 5888.CrossRefGoogle Scholar
  4. 4.
    V. Cuchelkar, P. Kopečkova, J. Kopeček, Mol. Pharm., 2008, 5, 776.CrossRefGoogle Scholar
  5. 5.
    R. A. Al-Qawasmeh, Y. Lee, M.-Y. Cao, X. Gu, A. Vassilakos, J. A. Wright, A. Young, Bioorg. Med. Chem. Lett., 2004, 14, 347.CrossRefGoogle Scholar
  6. 6.
    S. N. Lavrenov, Y. N. Luzikov, E. E. Bykov, M. I. Reznikova, E. V. Stepanova, V. A. Glazunova, Y. L. Volodina, V. V. Tatarsky, Jr., A. A. Shtil, M. N. Preobrazhenskaya, Bioorg. Med. Chem., 2010, 18, 6905.CrossRefGoogle Scholar
  7. 7.
    D. E. Gillespie, S. F. Brady, A. D. Bettermann, N. P. Cianciotto, M. R. Liles, M. R. Rondon, J. Clardy, R. M. Goodman, J. Handelsman, Appl. Environ. Microbiol., 2002, 68, 430.CrossRefGoogle Scholar
  8. 8.
    H. Heaney, S. V. Lei, J. Chem. Soc., Perkin Trans. 1, 1973, 499.Google Scholar
  9. 9.
    H. Budzikiwicz, H. Eckau, M. Ehrenberg, Tetrahedron Lett., 1972, 36, 3807.CrossRefGoogle Scholar
  10. 10.
    J. Müller, U. Pindur, Arch. Pharm., 1984, 317, 555.CrossRefGoogle Scholar
  11. 11.
    C. Wolf, Dynamic Stereochemistry of Chiral Compounds. Principles and Applications, RSC Publ., Cambridge, 2008, 532 pp.Google Scholar
  12. 12.
    E. E. Bykov, N. D. Chuvylkin, S. N. Lavrenov, M. N. Preobrazhenskaya, Khim. Geterotsikl. Soedin., 2010, 46, 1526 [Chem. Heterocycl. Compd. (Engl. Transl.), 2010, 46, 1233].Google Scholar
  13. 13.
    G. Sethi, B. Sung, B. Aggarwal, Exp. Biol. Med., 2008, 233, 21.CrossRefGoogle Scholar
  14. 14.
    A. A. Vartanian, O. S. Burova, E. V. Stepanova, A. Y. Baryshnikov, Melanoma Res., 2007, 17, 1.CrossRefGoogle Scholar
  15. 15.
    S. S. Printsevskaya, A. Y. Pavlov, E. N. Olsufyeva, E. P. Mirchink, E. B. Isakova, M. I. Reznikova, R. C. Goldman, A. A. Branstrom, E. R. Baizman, C. B. Longley, F. Sztaricskai, G. Batta, M. N. Preobrazhenskaya, J. Med. Chem., 2002, 45, 1340.CrossRefGoogle Scholar
  16. 16.
    M. N. Preobrazhenskaya, E. N. Olsufyeva, S. E. Solovieva, A. N. Tevyashova, M. I. Reznikova, Y. N. Luzikov, L. P. Terekhova, A. S. Trenin, O. A. Galatenko, I. D. Treshalin, E. P. Mirchink, V. M. Bukhman, H. Sletta, S. B. Zotchev, J. Med. Chem., 2009, 52, 189.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc.  2010

Authors and Affiliations

  • E. V. Stepanova
    • 1
  • A. A. Shtil’
    • 1
  • S. N. Lavrenov
    • 2
  • V. M. Bukhman
    • 1
  • A. N. Inshakov
    • 1
  • E. P. Mirchink
    • 2
  • A. S. Trenin
    • 2
  • O. A. Galatenko
    • 2
  • E. B. Isakova
    • 2
  • V. A. Glazunova
    • 1
  • L. G. Dezhenkova
    • 2
  • E. Sh. Solomko
    • 1
  • E. E. Bykov
    • 2
  • M. N. Preobrazhenskaya
    • 2
  1. 1.N. N. Blokhin Russian Oncological Scientific CenterRussian Academy of Medical SciencesMoscowRussian Federation
  2. 2.G. F. Gause Research Institute of New AntibioticsRussian Academy of Medical SciencesMoscowRussian Federation

Personalised recommendations