Skip to main content
Log in

Reactivity indices as a measure of rate constants for protonation of radical anions and dianions

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The DFT-based reactivity indices were used to describe protonation reactions of radical anions (RA) and dianions (DA) of aromatic compounds. A correlation between the experimental rate constants for protonation and the global reactivity indices was found. The indices were expressed through the electron affinities and ionization energies computed at the B3LYP level of theory. The protonation reactions of RA and DA of aromatic compounds are correctly described by the reactivity indices calculated as the inverse of the difference between the formal formation potential of RA (or DA) and the formal reduction potential of the proton donor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hydrogen-Transfer Reactions, Eds J. T. Hynes, J. P. Klinman, H. H. Limbach, R. L. Schowen, Wiley-VCH, Weinheim, 2007.

    Google Scholar 

  2. Proton-Transfer Reactions, Eds E. Caldin, V. Gold, Chapman and Hall, London, 1975, 448 pp.

    Google Scholar 

  3. A. I. Rusakov, A. S. Mendkovich, V. P. Gul’tyai, V. Yu. Orlov, Struktura i reaktsionnaya sposobnost’ organicheskikh anion-radikalov [Structure and Reactivity of Organic Radical Anions], Mir, Moscow, 2005, 294 pp. (in Russian).

    Google Scholar 

  4. P. Geerlings, F. De Proft, W. Langenaeker, Chem. Rev., 2003, 103, 1793.

    Article  CAS  Google Scholar 

  5. R. G. Parr, W. Yang, Density Functional Theory of Atoms and Molecules, Oxford University Press, New York, 1998.

    Google Scholar 

  6. D. M. York, W. Yang, J. Chem. Phys., 1996, 104, 159.

    Article  CAS  Google Scholar 

  7. S. Liu, F. De Proft, R. G. Parr, J. Phys. Chem. A, 1997, 101, 6991.

    Article  CAS  Google Scholar 

  8. P. Perez, L. R. Domingo, M. J. Aurell, R. Contreras, Tetrahedron, 2003, 59, 3117.

    Article  CAS  Google Scholar 

  9. J. L. Gazquez, A. Cedillo, A. Vela, J. Phys. Chem. A, 2007, 111, 1966.

    Article  CAS  Google Scholar 

  10. W. Yang, R. G. Parr, Proc. Natl. Acad. Sci. USA, 1984, 82, 6723.

    Article  Google Scholar 

  11. P. W. Ayers, F. De Proft, A. Borgoo, P. Geerlings, J. Chem. Phys., 2007, 126, 224107.

    Article  Google Scholar 

  12. Y. Li, N. S. Evans, J. Am. Chem. Soc., 1995, 117, 7756.

    Article  CAS  Google Scholar 

  13. M. J. S. Dewar, R. C. Dogherty, The PMO Theory of Organic Chemistry, Plenum Press, New York, 1975.

    Google Scholar 

  14. R. G. Pearson, J. Am. Chem. Soc., 1963, 85, 3533.

    Article  CAS  Google Scholar 

  15. P. K. Chattaraj, H. Lee, R. G. Parr, J. Am. Chem. Soc., 1991, 113, 1855.

    Article  CAS  Google Scholar 

  16. H. Chermette, J. Comput. Chem., 1999, 20, 129.

    Article  CAS  Google Scholar 

  17. R. G. Parr, R. G. Pearson, J. Am. Chem. Soc., 1983, 105, 7512.

    Article  CAS  Google Scholar 

  18. K. R. S. Chandrakumar, S. Pal, Int. J. Mol. Sci., 2002, 3, 324.

    Article  CAS  Google Scholar 

  19. Yu. Z. Zevatskii, D. V. Samoilov, Zh. Organ. Khimii, 2007, 43, 487 [Russ. J. Org. Chem. (Engl. Transl.), 2007, 43].

    Google Scholar 

  20. A. D. Becke, J. Chem. Phys., 1993, 98, 5648.

    Article  CAS  Google Scholar 

  21. C. Lee, W. Yang, R. G. Parr, Phys. Rev. B, 1988, 37, 785.

    Article  CAS  Google Scholar 

  22. S. H. Vosko, L. Wilk, M. Nusair, Can. J. Phys., 1980, 58, 1200.

    Article  CAS  Google Scholar 

  23. M. N. Mikhailov, N. D. Chuvylkin, I. V. Mishin, L. M. Kustov, Zh. Fiz. Khimii, 2009, 83, 868 [Russ. J. Phys. Chem. (Engl. Transl.), 2009, 83].

    Google Scholar 

  24. J. Tomassi, M. Persico, Chem. Rev., 1994, 94, 2027.

    Article  Google Scholar 

  25. E. Cances, B. Mennuchi, J. Tomassi, J. Chem. Phys., 1997, 107, 3032.

    Article  CAS  Google Scholar 

  26. V. Barone, M. Cossi, J. Phys. Chem. A, 1998, 102, 1995.

    Article  CAS  Google Scholar 

  27. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, Revision B.03, Gaussian, Inc., Pittsburgh (PA), 2003.

    Google Scholar 

  28. A. S. Mendkovich, V. N. Leibzon, L. V. Martynova, Elektrokhimiya, 1982, 18, 424 [Sov. Electrochem. (Engl. Transl.), 1982, 18].

    CAS  Google Scholar 

  29. A. S. Mendkovich, M. A. Syroeshkin, L. V. Mikhal’chenko, A. I. Rusakov, V. P. Gul’tyai, Izv. Akad. Nauk, Ser. Khim., 2008, 1463 [Russ. Chem. Bull., Int. Ed., 2008, 57, 1492].

    Google Scholar 

  30. M. A. Syroeshkin, A. S. Mendkovich, L. V. Mikhal’chenko, A. I. Rusakov, V. P. Gul’tyai, Izv. Akad. Nauk, Ser. Khim., 2009, 459 [Russ. Chem. Bull., Int. Ed., 2009, 58, 468].

    Google Scholar 

  31. A. Chatterjee, J. Chem. Sci., 2005, 117, 533.

    Article  CAS  Google Scholar 

  32. V. Pilepic, S. Ursic, J. Mol. Struct. (THEOCHEM), 2001, 538, 41.

    Article  CAS  Google Scholar 

  33. P. Thanikaivelan, J. Padmanabhan, V. Subramanian, T. Ramasami, Theor. Chem. Acc., 2002, 107, 326.

    Article  CAS  Google Scholar 

  34. J. Olah, C. Van Alsenoy, A. B. Sannigrahi, J. Phys. Chem. A, 2002, 106, 3885.

    Article  CAS  Google Scholar 

  35. F. A. Bulat, E. Chamorro, P. Fuentealba, A. Toro-Labbe, J. Phys. Chem. A, 2004, 108, 342.

    Article  CAS  Google Scholar 

  36. P. Jaramillo, P. Pérez, P. Fuentealba, S. Canuto, K. Coutinho, J. Phys. Chem. B, 2009, 113, 4314.

    Article  CAS  Google Scholar 

  37. K. Fukui, Science, 1982, 218, 747.

    Article  CAS  Google Scholar 

  38. M. A. Syroeshkin, M. N. Mikhailov, A. S. Mendkovich, A. I. Rusakov, Izv. Akad. Nauk, Ser. Khim., 2009, 41 [Russ. Chem. Bull., Int. Ed., 2009, 58, 41].

    Google Scholar 

  39. R. S. Ruoff, K. M. Kadish, P. Boulas, E. C. M. Chen, J. Phys. Chem., 1995, 99, 8843.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Mendkovich.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2015–2018, November, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mendkovich, A.S., Syroeshkin, M.A., Mikhailov, M.N. et al. Reactivity indices as a measure of rate constants for protonation of radical anions and dianions. Russ Chem Bull 59, 2068–2071 (2010). https://doi.org/10.1007/s11172-010-0356-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-010-0356-0

Key words

Navigation