Advertisement

Russian Chemical Bulletin

, 59:2068 | Cite as

Reactivity indices as a measure of rate constants for protonation of radical anions and dianions

  • A. S. Mendkovich
  • M. A. Syroeshkin
  • M. N. Mikhailov
  • A. I. Rusakov
Full Articles

Abstract

The DFT-based reactivity indices were used to describe protonation reactions of radical anions (RA) and dianions (DA) of aromatic compounds. A correlation between the experimental rate constants for protonation and the global reactivity indices was found. The indices were expressed through the electron affinities and ionization energies computed at the B3LYP level of theory. The protonation reactions of RA and DA of aromatic compounds are correctly described by the reactivity indices calculated as the inverse of the difference between the formal formation potential of RA (or DA) and the formal reduction potential of the proton donor.

Key words

radical anion dianion dinitrobenzene quantum chemical calculations density functional theory B3LYP functional PCM model 

References

  1. 1.
    Hydrogen-Transfer Reactions, Eds J. T. Hynes, J. P. Klinman, H. H. Limbach, R. L. Schowen, Wiley-VCH, Weinheim, 2007.Google Scholar
  2. 2.
    Proton-Transfer Reactions, Eds E. Caldin, V. Gold, Chapman and Hall, London, 1975, 448 pp.Google Scholar
  3. 3.
    A. I. Rusakov, A. S. Mendkovich, V. P. Gul’tyai, V. Yu. Orlov, Struktura i reaktsionnaya sposobnost’ organicheskikh anion-radikalov [Structure and Reactivity of Organic Radical Anions], Mir, Moscow, 2005, 294 pp. (in Russian).Google Scholar
  4. 4.
    P. Geerlings, F. De Proft, W. Langenaeker, Chem. Rev., 2003, 103, 1793.CrossRefGoogle Scholar
  5. 5.
    R. G. Parr, W. Yang, Density Functional Theory of Atoms and Molecules, Oxford University Press, New York, 1998.Google Scholar
  6. 6.
    D. M. York, W. Yang, J. Chem. Phys., 1996, 104, 159.CrossRefGoogle Scholar
  7. 7.
    S. Liu, F. De Proft, R. G. Parr, J. Phys. Chem. A, 1997, 101, 6991.CrossRefGoogle Scholar
  8. 8.
    P. Perez, L. R. Domingo, M. J. Aurell, R. Contreras, Tetrahedron, 2003, 59, 3117.CrossRefGoogle Scholar
  9. 9.
    J. L. Gazquez, A. Cedillo, A. Vela, J. Phys. Chem. A, 2007, 111, 1966.CrossRefGoogle Scholar
  10. 10.
    W. Yang, R. G. Parr, Proc. Natl. Acad. Sci. USA, 1984, 82, 6723.CrossRefGoogle Scholar
  11. 11.
    P. W. Ayers, F. De Proft, A. Borgoo, P. Geerlings, J. Chem. Phys., 2007, 126, 224107.CrossRefGoogle Scholar
  12. 12.
    Y. Li, N. S. Evans, J. Am. Chem. Soc., 1995, 117, 7756.CrossRefGoogle Scholar
  13. 13.
    M. J. S. Dewar, R. C. Dogherty, The PMO Theory of Organic Chemistry, Plenum Press, New York, 1975.Google Scholar
  14. 14.
    R. G. Pearson, J. Am. Chem. Soc., 1963, 85, 3533.CrossRefGoogle Scholar
  15. 15.
    P. K. Chattaraj, H. Lee, R. G. Parr, J. Am. Chem. Soc., 1991, 113, 1855.CrossRefGoogle Scholar
  16. 16.
    H. Chermette, J. Comput. Chem., 1999, 20, 129.CrossRefGoogle Scholar
  17. 17.
    R. G. Parr, R. G. Pearson, J. Am. Chem. Soc., 1983, 105, 7512.CrossRefGoogle Scholar
  18. 18.
    K. R. S. Chandrakumar, S. Pal, Int. J. Mol. Sci., 2002, 3, 324.CrossRefGoogle Scholar
  19. 19.
    Yu. Z. Zevatskii, D. V. Samoilov, Zh. Organ. Khimii, 2007, 43, 487 [Russ. J. Org. Chem. (Engl. Transl.), 2007, 43].Google Scholar
  20. 20.
    A. D. Becke, J. Chem. Phys., 1993, 98, 5648.CrossRefGoogle Scholar
  21. 21.
    C. Lee, W. Yang, R. G. Parr, Phys. Rev. B, 1988, 37, 785.CrossRefGoogle Scholar
  22. 22.
    S. H. Vosko, L. Wilk, M. Nusair, Can. J. Phys., 1980, 58, 1200.CrossRefGoogle Scholar
  23. 23.
    M. N. Mikhailov, N. D. Chuvylkin, I. V. Mishin, L. M. Kustov, Zh. Fiz. Khimii, 2009, 83, 868 [Russ. J. Phys. Chem. (Engl. Transl.), 2009, 83].Google Scholar
  24. 24.
    J. Tomassi, M. Persico, Chem. Rev., 1994, 94, 2027.CrossRefGoogle Scholar
  25. 25.
    E. Cances, B. Mennuchi, J. Tomassi, J. Chem. Phys., 1997, 107, 3032.CrossRefGoogle Scholar
  26. 26.
    V. Barone, M. Cossi, J. Phys. Chem. A, 1998, 102, 1995.CrossRefGoogle Scholar
  27. 27.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, Revision B.03, Gaussian, Inc., Pittsburgh (PA), 2003.Google Scholar
  28. 28.
    A. S. Mendkovich, V. N. Leibzon, L. V. Martynova, Elektrokhimiya, 1982, 18, 424 [Sov. Electrochem. (Engl. Transl.), 1982, 18].Google Scholar
  29. 29.
    A. S. Mendkovich, M. A. Syroeshkin, L. V. Mikhal’chenko, A. I. Rusakov, V. P. Gul’tyai, Izv. Akad. Nauk, Ser. Khim., 2008, 1463 [Russ. Chem. Bull., Int. Ed., 2008, 57, 1492].Google Scholar
  30. 30.
    M. A. Syroeshkin, A. S. Mendkovich, L. V. Mikhal’chenko, A. I. Rusakov, V. P. Gul’tyai, Izv. Akad. Nauk, Ser. Khim., 2009, 459 [Russ. Chem. Bull., Int. Ed., 2009, 58, 468].Google Scholar
  31. 31.
    A. Chatterjee, J. Chem. Sci., 2005, 117, 533.CrossRefGoogle Scholar
  32. 32.
    V. Pilepic, S. Ursic, J. Mol. Struct. (THEOCHEM), 2001, 538, 41.CrossRefGoogle Scholar
  33. 33.
    P. Thanikaivelan, J. Padmanabhan, V. Subramanian, T. Ramasami, Theor. Chem. Acc., 2002, 107, 326.CrossRefGoogle Scholar
  34. 34.
    J. Olah, C. Van Alsenoy, A. B. Sannigrahi, J. Phys. Chem. A, 2002, 106, 3885.CrossRefGoogle Scholar
  35. 35.
    F. A. Bulat, E. Chamorro, P. Fuentealba, A. Toro-Labbe, J. Phys. Chem. A, 2004, 108, 342.CrossRefGoogle Scholar
  36. 36.
    P. Jaramillo, P. Pérez, P. Fuentealba, S. Canuto, K. Coutinho, J. Phys. Chem. B, 2009, 113, 4314.CrossRefGoogle Scholar
  37. 37.
    K. Fukui, Science, 1982, 218, 747.CrossRefGoogle Scholar
  38. 38.
    M. A. Syroeshkin, M. N. Mikhailov, A. S. Mendkovich, A. I. Rusakov, Izv. Akad. Nauk, Ser. Khim., 2009, 41 [Russ. Chem. Bull., Int. Ed., 2009, 58, 41].Google Scholar
  39. 39.
    R. S. Ruoff, K. M. Kadish, P. Boulas, E. C. M. Chen, J. Phys. Chem., 1995, 99, 8843.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc.  2010

Authors and Affiliations

  • A. S. Mendkovich
    • 1
  • M. A. Syroeshkin
    • 1
  • M. N. Mikhailov
    • 1
  • A. I. Rusakov
    • 2
  1. 1.N. D. Zelinsky Institute of Organic ChemistryRussian Academy of SciencesMoscowRussian Federation
  2. 2.P. G. Demidov Yaroslavl State UniversityYaroslavlRussian Federation

Personalised recommendations