Russian Chemical Bulletin

, Volume 59, Issue 9, pp 1765–1770 | Cite as

Hydrosilylation of non-1-ene with phenylsilane in the presence of yttrium and lutetium bisguanidinate hydride complexes

  • D. M. Lyubov
  • A. S. Shavyrin
  • Yu. A. Kurskii
  • A. A. Trifonov
Full Articles


Some regularities of hydrosilylation of non-1-ene with phenylsilane catalyzed by yttrium and lutetium bisguanidinate hydride complexes {[(Me3Si)2NC(NR)2]2Ln(μ-H)}2 (Ln = Y, Lu; R = Pri, Cy (Cy is cyclohexyl)) have been studied. The addition of PhSiH3 to the double bond of non-1-ene in the presence of a {[(Me3Si)2NC(NPri)2]2Y(μ-H)}2 complex has the first order in olefin and zero order in phenylsilane. This indicates that the insertion of non-1-ene into the Ln-H bond is a rate determining stage of the process, whereas the metathesis of the Ln-C σ-bond upon the action of phenylsilane proceeds rapidly. The first example of successive double alkylation of phenylsilane with an olefin catalyzed by a rare-earth metal complex with the formation of tertiary silane has been discovered.

Key words

hydrosilylation alkenes phenylsilane organosilicon compounds yttrium complexes lutetium complexes kinetics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Marciniec, J. Gulinski, W. Urbaniac, Z. W. Kornetka, Comprehensive Handbook on Hydrosilylation, Pergamon, Oxford, 1992.Google Scholar
  2. 2.
    G. A. Molander, E. D. Dowdy, in Lanthanides: Chemistry and Use in Organic Synthesis, Ed. S. Kobayashi, Springer, Berlin, 1999, 119.CrossRefGoogle Scholar
  3. 3.
    L. N. Lewis, J. Stein, Y. Gao, R. E. Colborn, G. Hutchins, Platinum Met. Rev., 1997, 21, 66.Google Scholar
  4. 4.
    J. L. Speier, Adv. Organomet. Chem., 1979, 17, 407.CrossRefGoogle Scholar
  5. 5.
    J. L. Speier, J. A. Webster, G. H. Barnes, J. Am. Chem. Soc., 1956, 79, 974.CrossRefGoogle Scholar
  6. 6.
    B. D. Karstedt, US Pat. 3715334, 1973; Chem. Abstr., 1974, 80, 16134.Google Scholar
  7. 7.
    I. E. Markó, S. Stérin, O. Buisine, G. Mignani, P. Brandlard, B. Tinant, J.-P. Delcercq, Science, 2002, 298, 204.CrossRefGoogle Scholar
  8. 8.
    I. E. Markó, G. Michaud, G. Berthon-Gelloz, O. Buisine, S. Stérin, Adv. Synth. Catal., 2004, 346, 1429.CrossRefGoogle Scholar
  9. 9.
    O. Buisine, G. Berthon-Gelloz, J.-F. Briére, S. Stérin, G. Mignani, P. Brandlard, B. Tinant, J.-P. Delcercq, I. E. Markó, Chem. Commun., 2005, 3856.Google Scholar
  10. 10.
    J. F. Harrod, S. S. Yun, Organometallics, 1987, 6, 1381.CrossRefGoogle Scholar
  11. 11.
    M. R. Kesti, R. M. Waymouth, Organometallics, 1992, 11, 1095.CrossRefGoogle Scholar
  12. 12.
    A. K. Dash, I. Gourevich, J. Q. Wang, J. Wang, M. Kapon, M. S. Eisen, Organometallics, 2001, 20, 5084.CrossRefGoogle Scholar
  13. 13.
    Y. Sakakura, H. J. Lautenschlager, M. J. Tanaka, J. Chem. Soc., Chem. Commun., 1991, 40.Google Scholar
  14. 14.
    G. A. Molander, M. Julius, J. Org. Chem., 1992, 57, 6347.CrossRefGoogle Scholar
  15. 15.
    P. F. Fu, L. Brard, Y. Li, T. J. Marks, J. Am. Chem. Soc., 1995, 117, 7157.CrossRefGoogle Scholar
  16. 16.
    G. A. Molander, W. H. Retsch, J. Am. Chem. Soc., 1997, 119, 8817.CrossRefGoogle Scholar
  17. 17.
    G. A. Molander, E. D. Dowdy, B. C. Noll, Organometallics, 1997, 17, 3754.CrossRefGoogle Scholar
  18. 18.
    K. Takaki, K. Sonoda, T. Kousaka, G. Koshoji, T. Shishido, K. Takehira, Tetrahedron Lett., 2001, 42, 9211.CrossRefGoogle Scholar
  19. 19.
    Z. Hou, Y. Zhang, O. Tardif, Y. Wakatsuki, J. Am. Chem. Soc., 2001, 123, 9216.CrossRefGoogle Scholar
  20. 20.
    A. Z. Voskoboynikov, A. K. Shestakova, I. P. Beletskaya, Organometallics, 2001, 20, 2794.CrossRefGoogle Scholar
  21. 21.
    A. A. Trifonov, T. P. Spaniol, J. Okuda, Organometallics, 2001, 20, 4869.CrossRefGoogle Scholar
  22. 22.
    O. Tardif, M. Nishiura, Z. Hou, Tetrahedron, 2003, 59, 10525.CrossRefGoogle Scholar
  23. 23.
    Y. Horino, T. Livinghouse, Organometallics, 2004, 23, 12.CrossRefGoogle Scholar
  24. 24.
    D. Robert, A. A. Trifonov, P. Voth, J. Okuda, J. Organomet. Chem., 2006, 691, 4393.CrossRefGoogle Scholar
  25. 25.
    A. A. Trifonov, T. P. Spaniol, J. Okuda, J. Chem. Soc., Dalton Trans., 2004, 2245.Google Scholar
  26. 26.
    G. A. Molander, J. A. Antoinette, C. Romeo, Chem. Rev., 2002, 102, 2161.CrossRefGoogle Scholar
  27. 27.
    I. P. Beletskaya, A. Z. Voskoboinikov, I. N. Parshina, G. K.-I. Magomedov, Izv. Akad. Nauk SSSR, Ser. Khim., 1990, 693 [Bull. Acad. Sci. USSR, Div. Chem. Sci. (Engl. Transl.), 1990, 39, 613].Google Scholar
  28. 28.
    A. A. Trifonov, Usp. Khim., 2007, 76, 1122 [Russ. Chem. Rev. (Engl. Transl.), 2007, 76].Google Scholar
  29. 29.
    M. Rastätter, A. Zulys, P. W. Roesky, Chem. Commun., 2006, 874.Google Scholar
  30. 30.
    M. Rastätter, A. Zulys, P. W. Roesky, Chem. Eur. J., 2007, 13, 3606.CrossRefGoogle Scholar
  31. 31.
    T. I. Gountchev, T. D. Tilley, Organometallics, 1999, 18, 5661.CrossRefGoogle Scholar
  32. 32.
    B. R. Elvidge, S. Arndt, T. P. Spaniol, J. Okuda, J. Chem. Soc., Dalton Trans., 2006, 890.Google Scholar
  33. 33.
    S. Ge, A. Meetsma, B. Hessen, Organometallics, 2008, 27, 3131.CrossRefGoogle Scholar
  34. 34.
    M. Konkol, M. Kondracka, P. Voth, T. P. Spaniol, J. Okuda, Organometallics, 2008, 27, 3774.CrossRefGoogle Scholar
  35. 35.
    A. A. Trifonov, E. A. Fedorova, G. K. Fukin, M. N. Bochkarev, Eur. J. Inorg. Chem., 2004, 4396.Google Scholar
  36. 36.
    A. A. Trifonov, G. G. Skvortsov, D. M. Lyubov, N. A. Skorodumova, G. K. Fukin, E. V. Baranov, V. N. Glushakova, Chem. Eur. J., 2006, 12, 5320.CrossRefGoogle Scholar
  37. 37.
    D. M. Lyubov, A. M. Bubnov, G. K. Fukin, F. M. Dolgushin, M. Yu. Antipin, O. Pelcé, M. Schappacher, S. M. Guillaume, A. A. Trifonov, Eur. J. Inorg. Chem., 2008, 2090.Google Scholar
  38. 38.
    H. Yasuda, J. Organomet. Chem., 2002, 647, 128.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc.  2010

Authors and Affiliations

  • D. M. Lyubov
    • 1
  • A. S. Shavyrin
    • 1
  • Yu. A. Kurskii
    • 1
  • A. A. Trifonov
    • 1
  1. 1.G. A. Razuvaev Institute of Organometallic ChemistryRussian Academy of SciencesNizhny NovgorodRussian Federation

Personalised recommendations