Advertisement

Russian Chemical Bulletin

, Volume 59, Issue 8, pp 1605–1611 | Cite as

E/Z(C=C)-Isomerization of enamines of 3-formyl-4-hydroxycoumarin induced by organic solvents

  • V. F. Traven
  • I. V. Ivanov
  • V. S. Lebedev
  • T. A. Chibisova
  • B. G. Milevskii
  • N. P. Solov’eva
  • V. I. Polshakov
  • G. G. Alexandrov
  • O. N. Kazheva
  • O. A. Dyachenko
Full Articles

Abstract

According to 1? and 13? NMR data, enamines of 3-formyl-4-hydroxycoumarin exist in the keto enamine tautomeric form and undergo Z/E-isomerization around the C=C bond in CDCl3, DMSO-d6, and CD3OD at room temperature. The activation energies of ?/Z-isomerization were measured experimentally and calculated by the B3LYP/6-311++G(d,p) method. An X-ray diffraction study showed that 3-(benzyliminomethyl)chromane-2,4-dione in the crystalline state exists as a mixture of two keto enamine isomers.

Key words kw]imines, kw]isomerization, kw]tautomerism, kw]keto enamines, kw]hydroxy imines, kw]coumarin derivatives 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. J. Williams, M. Dovichi, G. Patony, L. Strekowski, Anal. Chem., 1993, 65, 601.CrossRefGoogle Scholar
  2. 2.
    G. Patony, J. Salon, J. Sowell, L. Strekowski, Molecules, 2004, 9, 40.CrossRefGoogle Scholar
  3. 3.
    K. Uekama, F. Hirayama, T. Irie, Chem. Rev., 1998, 98, 2045.CrossRefGoogle Scholar
  4. 4.
    C. M. Rudzinski, D. G. Nocera, in Optical Sensors and Switches; Ed. K. S. Schaze, Marcel Dekker, New York, 2001, p. 1.Google Scholar
  5. 5.
    S. M. Yarmoluk, S. S. Lukashov, M. Yu. Losytskyy, B. Akerman, O. S. Kornyushyna, Spectrochim. Acta, Part A, 2002, 58, 3223.CrossRefGoogle Scholar
  6. 6.
    W. G. Herkstroeter, J. Am. Chem. Soc., 1976, 98, 330.CrossRefGoogle Scholar
  7. 7.
    A. D. Dubonosov, V. I. Minkin, V. A. Bren’, E. N. Shepelenko, N. N. Tkalina, ARKIVOC, 2003, xii, 12.Google Scholar
  8. 8.
    V. A. Bren’, A. D. Dubonosov, L. L. Popova, V. P. Rybalkin, I. O. Sadekov, E. N. Shepelenko, A. V. Tsukanov, ARKIVOC, 2005, vii, 60.Google Scholar
  9. 9.
    V. F. Traven, V. S. Miroshnikov, A. S. Pavlov, I. V. Ivanov, A. V. Panov, T. A. Chibisova, Mendeleev Commun., 2007, 17, 88.CrossRefGoogle Scholar
  10. 10.
    You_Sheng Chen, Pei_Yu Kuo, Ding_Yah Yang, Tetrahedron, 2006, 62, 9410.CrossRefGoogle Scholar
  11. 11.
    V. F. Traven, O. B. Safronova, L. I. Vorob’eva, T.A. Chibisova, I. N. Senchenya, Zh. Obshch. Khim., 2000, 70, 847 [Russ. J. Gen. Chem. (Engl. Transl.), 2000, 70].Google Scholar
  12. 12.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al_Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen, M. W. Wong, J. L. Andres, M. Head_Gordon, E. S. Replogle, J. A. Pople, Gaussian 98, Gaussian, Inc., Pittsburgh (PA), 1998.Google Scholar
  13. 13.
    M. Hamdi, P. Granier, R. Sakellariou, V. Speziale, J. Heterocycl. Chem., 1993, 30, 1155.CrossRefGoogle Scholar
  14. 14.
    V. F. Traven, V. S. Miroshnikov, T. A. Chibisova, V. A. Barachevskii, O. V. Venidiktova, Yu. P. Strokach, Izv. Akad. Nauk, Ser. Khim., 2005, 2342 [Russ. Chem. Bull., Int. Ed., 2005, 54, 2417].Google Scholar
  15. 15.
    A. V. Manaev, T. A. Chibisova, V. F. Traven, Izv. Akad. Nauk, Ser. Khim., 2006, 2144 [Russ. Chem. Bull., Int. Ed., 2006, 55, 2226].Google Scholar
  16. 16.
    J. Berthet, S. Delbaere, L. M. Carvalho, G. Vermeersch, P. J. Coelho, Tetrahedron Lett., 2006, 47, 4903.CrossRefGoogle Scholar
  17. 17.
    J. Hobley, V. Malatesta, Phys. Chem. Chem. Phys., 2000, 2, 57.CrossRefGoogle Scholar
  18. 18.
    P. Ollinger, O. Wolfbeis, H. Junek, Monatshefte fur Chemie, 1975, 106, 963.CrossRefGoogle Scholar
  19. 19.
    G. Cottone, R. Noto, Gianfranco La Manna, Molecules, 2008, 13, 1246.CrossRefGoogle Scholar
  20. 20.
    R. G. Parr, W. Yang, Density Functional Theory of Atoms and Molecules, Oxford University Press, Oxford, 1989.Google Scholar
  21. 21.
    C. T. Lee, W. T. Yang, R. G. Parr, Phys. Rev. B, 1988, 37, 785.CrossRefGoogle Scholar
  22. 22.
    K. Wolinski, J. F. Hinton, P. Pulay, J. Am. Chem. Soc., 1990, 112, 49.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc.  2010

Authors and Affiliations

  • V. F. Traven
    • 1
  • I. V. Ivanov
    • 1
  • V. S. Lebedev
    • 1
  • T. A. Chibisova
    • 1
  • B. G. Milevskii
    • 1
  • N. P. Solov’eva
    • 1
  • V. I. Polshakov
    • 2
  • G. G. Alexandrov
    • 3
  • O. N. Kazheva
    • 4
  • O. A. Dyachenko
    • 4
  1. 1.D. Mendeleev University of Chemical Technology of RussiaMoscowRussian Federation
  2. 2.Center for Drug ChemistryMoscowRussian Federation
  3. 3.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow RegionRussian Federation
  4. 4.N. S. Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussian Federation

Personalised recommendations