Russian Chemical Bulletin

, Volume 59, Issue 7, pp 1387–1392 | Cite as

N-Substituted hepta(methoxycarbonyl)-3a,7a-dihydroindazoles as new sources for the generation of nitrile imines

  • Yu. V. Tomilov
  • D. N. Platonov
  • G. P. Okonnishnikova
  • O. M. Nefedov
Full Articles


Thermal decomposition of N-substituted hepta(methoxycarbonyl)-3a,7a-dihydroindazoles proceeds through the elimination of hexamethyl benzenehexacarboxylate and results in the generation of l-aryl-3-methoxycarbonylnitrile imines, which are intercepted by both the electron-withdrawing and electron-releasing olefins, for example, methyl acrylate, cyclopentene, vinylcyclopropane, or ethyl vinyl ether, to form the corresponding pyrazolines and pyrazoles. In the presence of propan-2-ol, the main process proceeds through the addition of nitrile inline to the O—H bond to form methyl 2-isopropoxy-2-[2-(4-methoxyphenyl)hydrazono]acetate.

Key words 3a,7a-dihydroindazoles nitrile imines pyrazolines pyrazoles 1,3-dipolar addition thermolysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Huisgen, Angew. Chem., Int. Ed. (Engl.), 1963, 2, 565, 633.CrossRefGoogle Scholar
  2. 2.
    P. Caramella, P. Grünanger, in 1,3-Dipolar Cycloaddition Chemistry, Ed. A. Padwa, Wiley Interscience, New York, 1984, vol. 1, p. 292.Google Scholar
  3. 3.
    P. K. Claus, in Houben-Weil, Thieme-Verlag, Stuttgart, 1990, vol. Band E 14b, Teil 1, p. 33.Google Scholar
  4. 4.
    J. T. Sharp, in The Chemistry of Heterocyclic Compounds, vol. 59: Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products, Eds A. Padwa, W. H. Pearson, John Wiley and Sons, New York, 2002, p. 473.Google Scholar
  5. 5.
    G. Bertrand, C. Wentrup, Angew. Chem., Int. Ed. (Engl.), 1994, 33, 527.CrossRefGoogle Scholar
  6. 6.
    G. Maier, J. Eckwert, A. Bothur, H. P. Reisenauer, Ch. Schmidt, LeibigsAnn., 1996, 1041.Google Scholar
  7. 7.
    R. C. Mawhinney, H. M. Muchall, G. H. Peslherbe, Chem. Commun., 2004, 1862.Google Scholar
  8. 8.
    F. Cargnoni, G. Molteni, D. L. Cooper, M. Raimondi, A. Ponti, Chem. Commun., 2006, 1030.Google Scholar
  9. 9.
    Y. Wang, C. I. Rivera Vera, Q. Lin, Org. Lett., 2007, 9, 4155.CrossRefGoogle Scholar
  10. 10.
    G. Sicard, A. Baceiredo, G. Bertrand, J. Am. Chem. Soc., 1988, 110, 2663.CrossRefGoogle Scholar
  11. 11.
    Yu. V. Tomilov, D. N. Platonov, R. F. Salikov, G. P. Okon-nishnikova, Tetrahedron, 2008, 64, 10201.CrossRefGoogle Scholar
  12. 12.
    A. Ponti, G. Molteni, J. Org. Chem., 2001, 66, 5252.CrossRefGoogle Scholar
  13. 13.
    K. N. Houk, J. Sims, C. R. Watts, L. Luskus, J. Am. Chem. Soc., 1973, 95, 7301.CrossRefGoogle Scholar
  14. 14.
    G. Molteni, A. Ponti, M. Orlandi, New J. Chem., 2002, 26, 1340.CrossRefGoogle Scholar
  15. 15.
    R. N. Butler, K. J. Fitzgerald, J. Chem. Soc., Perkin Trans. 1, 1988, 1587.Google Scholar
  16. 16.
    P. Leihkauf, V. Lohse, Ch. Csongar, G. Tomaschewski, J. Wilda, Z. Chem., 1985, 25, 266.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc.  2010

Authors and Affiliations

  • Yu. V. Tomilov
    • 1
  • D. N. Platonov
    • 1
  • G. P. Okonnishnikova
    • 1
  • O. M. Nefedov
    • 1
  1. 1.N. D. Zelinsky Institute of Organic ChemistryRussian Academy of SciencesMoscowRussian Federation

Personalised recommendations