Advertisement

Russian Chemical Bulletin

, Volume 59, Issue 4, pp 724–732 | Cite as

Spectroscopic and electrochemical study of dinuclear and mononuclear copper complexes with the bidentate ligand of the 2,2′-diquinoline series

  • S. Z. Vatsadze
  • A. V. Dolganov
  • A. V. Yakimanskii
  • M. Ya. Goikhman
  • I. V. Podeshvo
  • K. A. Lyssenko
  • A. L. Maksimov
  • T. V. Magdesieva
Full Articles

Abstract

The newly synthesized complex (2) of copper(I) chloride with di-n-hexyl 2,2′-biquinoline-4,4′-dicarboxylate (L) was spectroscopically and electrochemically characterized. The X-ray diffraction study showed that the crystals of complex 2 consist of the dinuclear moieties [L2Cu1 2(μ-Cl)2] containing Cu2(μ-Cl)2 clusters. Spectrophotometric studies and ESI-mass spec-trometric measurements showed that after the dissolution of complex 2 in acetonitrile (AN) and N-methyl-2-pyrrolidone (NMP), the solution contained not only the dinuclear complexes [L2Cu1 2(μ-Cl)2] but also [L2Cu1]Cl, [LCu1Cl(Sol)], and [Cu1Cl(Sol)] (Sol is the solvent). The electrochemical data also confirm the conclusion that bridged dinuclear chloride complex 2 dissociates both in NMP and AN to form the tetrahedral bis-biquinoline complex [L2Cu1]Cl. In solutions of complex 2 in alcohols and N,N-dimethylformamide (DMF), only [L2Cu1]Cl and [Cu1Cl(Sol)] are present. In EtOH, AN, and DMF, [Cu1Cl(Sol)] undergoes disproportionation to [Cu11Cl(Sol)] and Cu0.

Key words

crystal engineering supramolecular chemistry coordination compounds 2,2′-biquinolines X-ray diffraction study mass spectrometry electrochemistry spectro-photometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Comprehensive Coordination Chemistry II: From Biology to Nanotechnology, Eds J. A. McCleverty, T. J. Meyer, Vol. 1, Elsevier, Amsterdam, 2005.Google Scholar
  2. 2.
    F. Durola, J.-P. Savage, Angew. Chem., Int. Ed., 2007, 46, 3537.CrossRefGoogle Scholar
  3. 3.
    V. Balzani, A. Credi, S. Silvi, M. Venturi, Chem. Soc. Rev., 2006, 35, 1135.CrossRefGoogle Scholar
  4. 4.
    S. Kawano, N. Fujita, S. Shinkai, J. Am. Chem. Soc., 2004, 126, 8592.CrossRefGoogle Scholar
  5. 5.
    J. V. Steed and J. L. Etwood, Supramolecular Chemistry, John Wiley and Sons, Ltd, Chichester-New York—Weinheim—Brisbane—Singapore—Toronto, 2000.Google Scholar
  6. 6.
    V. V. Skopenko, A. Yu. Tsivadze, L. I. Savranskii, A. D. Garnovskii, Koordinatsionnaya khimiya [Coordination Chemistry], Akademkniga, Moscow, 2007, 487 p. (in Russian).Google Scholar
  7. 7.
    T. Nabeshima, T. Inaba, N. Furukawa, Inorg. Chem., 1993, 32, 1407.CrossRefGoogle Scholar
  8. 8.
    S. M. Scott, K. C. Gordon, Inorg. Chem., 1996, 35, 2452.CrossRefGoogle Scholar
  9. 9.
    Y. Jahng, J. Hazelrigg, D. Kimball, E. Riesgo, F. Wu, R. P. Thummel, Inorg. Chem., 1997, 36, 5390.CrossRefGoogle Scholar
  10. 10.
    M. D. Stephenson, M. J. Hardie, Dalton Trans., 2006, 3407.Google Scholar
  11. 11.
    L. Carlucci, G. Ciani, A. Gramaccioli, D. M. Proserpio, S. Rizzato, Cryst. Eng. Commun., 2000, 1.Google Scholar
  12. 12.
    O. Gonzalez, A. M. Atria, E. Spodine, J. Manzur, M. T. Garland, Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 1993, 49, 1589.CrossRefGoogle Scholar
  13. 13.
    E. Kovari, R. Kramer, Z. Naturforsch., B: Chem. Sci., 1994, 49, 1324.Google Scholar
  14. 14.
    A. Alvarez-Larena, J. L. Brianso-Penalva, J. F. Piniella, R. Moreno-Esparza, L. Ruiz-Ramirez, A. Tovar, Z. Kristal-logr., 1995, 210, 543.CrossRefGoogle Scholar
  15. 15.
    A. M. Atria, P. Cortes, L. Acevedo, R. Trujillo, J. Manzur, O. Pena, R. Baggio, J. Chil. Chem. Soc., 2004, 49, 341.CrossRefGoogle Scholar
  16. 16.
    E. Tynan, P. Jensen, A. C. Lees, B. Moubaraki, K. S. Murray, P. E. Kruger, Cryst. Eng. Commun., 2005, 90.Google Scholar
  17. 17.
    G. E. Kostakis, E. Nordlander, M. Haukka, J. C. Plakatouras, Acta Crystallogr., Sect. E: Struct. Rep. Online, 2006, 62, m77.CrossRefGoogle Scholar
  18. 18.
    M. Ghosh, P. Biswas, U. Floerke, K. Nag, Inorg. Chem., 2008, 47, 281.CrossRefGoogle Scholar
  19. 19.
    F. M. Menger, J.-J. Lee, K. S. Hagen, J. Am. Chem. Soc. 1991, 113, 4017.CrossRefGoogle Scholar
  20. 20.
    A. M. Atria, R. F. Baggio, M. T. Garland, E. Spodine, Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 1994, 50, 864.CrossRefGoogle Scholar
  21. 21.
    B. Viossat, J. F. Gaucher, A. Mazurier, M. Selkti, A. Tomas, Z. Kristallogr.-New Cryst. Struct., 1998, 213, 329.Google Scholar
  22. 22.
    Y.-Q. Zheng, J. Sun, J.-L. Lin, Z. Anorg. Allg. Chem., 2001, 627, 90.CrossRefGoogle Scholar
  23. 23.
    J.-H. Yu, Z.-L. Lu, J.-Q. Xu, H.-Y. Bie, J. Lu, X. Zhang, New J. Chem., 2004, 28, 940.CrossRefGoogle Scholar
  24. 24.
    L. Wang, R.-B. Huang, L.-S. Long, L.-S. Zheng, E.-B. Wang, Z.-X. Xie, J. Coord. Chem., 2005, 58, 1439.CrossRefGoogle Scholar
  25. 25.
    Y. Muranishi, Y. Wang, M. Odoko, N. Okabe, Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 2005, 61, m307.CrossRefGoogle Scholar
  26. 26.
    R. M. Williams, L. De Cola, F. Hartl, J. Lagref, J.-M. Planeix, A. De Cian, M. W. Hosseini, Coord. Chem. Rev., 2002, 230, 253.CrossRefGoogle Scholar
  27. 27.
    S. Kitagawa, M. Munakata, N. Miyaji, Bull. Chem. Soc. Jpn, 1983, 56, 2258.CrossRefGoogle Scholar
  28. 28.
    M. Munakata, M. Maekawa, S. Kitagawa, S. Nishibayashi, Kinki Daigaku Rikogakubu Kenkyu Hokoku, 1989, 25, 81; Chem.Abstrs, 1990, 112, 138441.Google Scholar
  29. 29.
    R. J. Butcher, E. Sinn, Inorg. Chem., 1977, 16, 2334.CrossRefGoogle Scholar
  30. 30.
    E. Sinn, J. Chem. Soc., Dalton Trans., 1976, 162.Google Scholar
  31. 31.
    B. F. Ali, K. Al-Sou ’od, N. Al-Ja ’ar, A. Nassar, M. H. Zaghal, Z. Judeh, R. Al-Far, M. Al-Refai, M. Ibrahim, K. Mansi, K. H. Al-Obaidi, J. Coord. Chem., 2006, 59, 229.CrossRefGoogle Scholar
  32. 32.
    A. L. Gershuns, A. A. Verezubova, Zh. A. Tolstykh, Izv. Vuzov, Ser. Khim. i Khimich. Tekh. [Proceedings of Institutes: Chemistry and Chemical Technology], 1961, No. 1, 25.Google Scholar
  33. 33.
    H. R. Al-Obaidi, K. C. Gordon, J. J. McGarvey, S. E. J. Bell, J. Grimshaw, J. Phys. Chem., 1993, 97, 10942.CrossRefGoogle Scholar
  34. 34.
    R. Bilewicz, M. Pietraszkiewicz, Polyhedron, 1990, 9, 2353.CrossRefGoogle Scholar
  35. 35.
    T. V. Magdesieva, A. V. Dolganov, A. V. Yakimanskii, M. Ya. Goikhman, I. V. Podeshvo, V. V. Kudryavtsev, Electrochemistry, 2007, 43, 1194 [Russ. J. Electrochem. (Engl. Transl.), 2007,43].Google Scholar
  36. 36.
    K. Stolarczyk, R. Bilewicz, L. Siegfried, T. Kaden, Inorg. Chem. Acta, 2003, 348, 129.CrossRefGoogle Scholar
  37. 37.
    T. V. Magdesieva, A. V. Dolganov, P. M. Poleshchuk, A. V. Yakimanskii, M. Ya. Goikhman, I. V. Podeshvo, V. V. Kudryavtsev, Izv. Akad. Nauk, Ser. Khim., 2007, 1331 [Russ. Chem. Bull., Int. Ed., 2007, 56, 1380].Google Scholar
  38. 38.
    S. D. Lesesne, H. R. Henze, J. Am. Chem. Soc., 1942, 64, 1897.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc.  2010

Authors and Affiliations

  • S. Z. Vatsadze
    • 1
  • A. V. Dolganov
    • 1
  • A. V. Yakimanskii
    • 2
  • M. Ya. Goikhman
    • 2
  • I. V. Podeshvo
    • 2
  • K. A. Lyssenko
    • 3
  • A. L. Maksimov
    • 1
  • T. V. Magdesieva
    • 1
  1. 1.Department of ChemistryM. V. Lomonosov Moscow State UniversityMoscowRussian Federation
  2. 2.Institute of Macromolecular CompoundsRussian Academy of SciencesSt. PetersburgRussian Federation
  3. 3.A. N. Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussian Federation

Personalised recommendations