Advertisement

Russian Chemical Bulletin

, Volume 58, Issue 10, pp 2028–2034 | Cite as

Thermal decomposition of 1,3,3-trinitroazetidine in the gas phase, solution, and melt

  • V. V. Nedel’ko
  • B. L. Korsunskii
  • N. N. Makhova
  • N. V. Chukanov
  • T. S. Larikova
  • I. V. Ovchinnikov
  • V. A. Tartakovsky
Full Articles

Abstract

1,3,3-Trinitroazetidine (TNAZ) was synthesized using the alternative approach based on the transformation of 3-oximino-1-(p-toluenesulfonyl)azetidine in the reaction with nitric acid through intermediate pseudonitrol. The thermal decomposition of TNAZ in the gas phase, melt and m-dinitrobenzene solution in a wide concentration range (5–80%) was studied by manometry, volumetry, thermogravimetry, IR spectroscopy, and mass spectrometry. In the gas phase in the temperature range from 170 to 220°C the thermal decomposition proceeds according to the first-order kinetic law with the activation energy 40.5 kcal mol−1 and pre-exponential factor 1015.0 s−1. The major gaseous reaction products are N2, NO, NO2, CO2, H2O, and nitroacetaldehyde, and trace amounts of CO and HCN are formed. The rate-determining step of the process is the homolytic cleavage of the N-NO2 bond in the TNAZ molecule. In melt at 170–210 °C the thermal decomposition proceeds with the pronounced self-acceleration and the maximum reaction rates are observed at conversions 53.9–67.4%. The solid decomposition products accelerate the reaction. It is most likely that the autocatalysis of TNAZ decomposition in the liquid phase is due to the autocatalytic decomposition of 1-nitroso-3,3-dinitroazetidine, which is formed by the thermal decomposition of TNAZ. In m-dinitrobenzene TNAZ also decomposes with self-acceleration. The higher the concentration in the solution, the more pronounced the self-acceleration. Additives of picric acid moderately accelerate the thermal decomposition of TNAZ, whereas hexamethylenetetraamine additives exert a strong acceleration.

Key words

1,3,3-trinitroazetidine synthesis thermal decomposition thermogravimetry IR spectroscopy mass spectrometry kinetics volumetry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Z. Jalovy, S. Zeman, M. Suceska, P. Vavra, K. Dudek, M. Rajic, J. Energ. Mater., 2001, 19, 219.CrossRefGoogle Scholar
  2. 2.
    Y.-X. Zhang, S. H. Baue, J. Phys. Chem. A, 1998, 102, 5846.CrossRefGoogle Scholar
  3. 3.
    J. Oxley, J. Smith, W. Zheng, E. Rogers, M. Coburn, J. Phys. Chem. A, 1997, 101, 4375.CrossRefGoogle Scholar
  4. 4.
    Zhang Jiaoqiang, Hu Rongzu, Zhu Chunhua, Feng Guofu, Long Quihe, Thermochim. Acta, 1997, 298, 31.CrossRefGoogle Scholar
  5. 5.
    M. Suceska, M. Rajic, S. Zeman, Z. Jalovy, J. Energ. Mater., 2001, 19, 259.CrossRefGoogle Scholar
  6. 6.
    Y. Oyumi, T. B. Brill, Comb. and Flame, 1985, 62, 225.CrossRefGoogle Scholar
  7. 7.
    K. Anderson, J. Homsy, R. Behrens, S. Bulusu, 11 Intern. Detonation Symp. (Snowmass, Colo., August 30-September 4, 1998), Arlington (Va), 2000, 239.Google Scholar
  8. 8.
    D. S. Anex, J. C. Allen, Y. T. Lee, in Chemistry of Energetic Materials, Eds G. A. Olah, D. R. Squire, Academic Press, San Diego (Calif.), 1991, p. 27.Google Scholar
  9. 9.
    N. L. Garland, S. W. McElvany, Chem. Phys. Lett., 1998, 297, 147.CrossRefGoogle Scholar
  10. 10.
    A. Katritzky, D. J. Cundy, J. Chen, J. Heterocycl. Chem., 1994, 31, 271.CrossRefGoogle Scholar
  11. 11.
    A. Marchand, S. Sharma, U. Zope, W. H. Watson, R. P. Kashyap, J. Org. Chem., 1993, 58, 759.CrossRefGoogle Scholar
  12. 12.
    F. I. Dubovitskii, G. B. Manelis, A. G. Merzhanov, Dokl. Akad. Nauk SSSR, 1958, 121, 668 [Dokl. Chem. (Engl. Transl.), 1958].Google Scholar
  13. 13.
    G. B. Manelis, G. M. Nazin, Yu. I. Rubtsov, V. A. Strunin, Thermal Decomposition and Combustion of Explosives and Propellants, Taylor and Francis, London, 2003, 376 pp.Google Scholar
  14. 14.
    P. Politzer, J. M. Seminario, Chem. Phys. Lett., 1993, 207, 27.CrossRefGoogle Scholar
  15. 15.
    N. L. Garland, H. H. Nelson, J. Phys. Chem., B, 1998, 102, 2663.CrossRefGoogle Scholar
  16. 16.
    W. Tsang, J. T. Herron, J. Phys. Chem. Ref. Data, 1991, 20, 609.CrossRefGoogle Scholar
  17. 17.
    F. I. Dubovitskii, G. B. Manelis, L. P. Smirnov, Zh. Fiz. Khim., 1961, 35, 521 [J. Phys. Chem. USSR (Engl. Transl.), 1961, 35].Google Scholar
  18. 18.
    W. H. Jones, J. Am. Chem Soc., 1954, 76, 829.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc.  2009

Authors and Affiliations

  • V. V. Nedel’ko
    • 1
  • B. L. Korsunskii
    • 1
  • N. N. Makhova
    • 2
  • N. V. Chukanov
    • 1
  • T. S. Larikova
    • 1
  • I. V. Ovchinnikov
    • 2
  • V. A. Tartakovsky
    • 2
  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow RegionRussian Federation
  2. 2.N. D. Zelinsky Institute of Organic ChemistryRussian Academy of SciencesMoscowRussian Federation

Personalised recommendations