Russian Chemical Bulletin

, Volume 58, Issue 5, pp 908–919 | Cite as

Electron transfer and subsequent reactions during electrochemical oxidation of aryl- and alkylthio derivatives of mucochloric acid

  • N. F. Devyatova
  • A. R. Kurbangalieva
  • V. V. Yanilkin
  • G. A. Chmutova
Full Articles


The electrochemical oxidation of aryl- and alkylthio derivatives of mucochloric acid (3,4-dichloro-5-hydroxyfuran-2(5H)-one) in MeCN-Bu4NBF4 (0.1 mol L−1) was investigated. It was shown that all sulfides are electrochemically active, from one to five oxidation steps of sulfur-containing groups were observed for them. The ease and direction of oxidation of the thio group depend on its nature and position in the furanone ring. 3-Substituted 2(5H)-furanones possess the lowest oxidation potential. 4-Substituted 2(5H)-furanones are predominantly oxidized to sulfoxides, 5-aryl- and -alkylthio derivatives undergo fragmentation to give mucochloric acid, and 3-arylthio derivative gives complex unidentified mixture of products. In the case of 3,4-bis(4-methylphenylthio) derivative, the oxidation product of the arylthio group at the 3 position to the corresponding sulfoxide was isolated. Based on the data from cyclic voltammetry with different concentrations of a substrate and water added, the results of preparative electrolysis and quantum chemical calculations, possible mechanisms of electrochemical oxidation of mucochloric acid-derived sulfides are discussed. The initial common step is a reversible single-electron transfer from the substrate molecule to form highly reactive radical cation.

Key words

mucochloric acid sulfides furan-2(5H)-ones electrochemical oxidation quantum chemistry sulfoxide fragmentation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ch. K. Mann, K. K. Barnes, Electrochemical Reactions in Nonaqueous Systems, Marcel Dekker, 1970, 560 pp.Google Scholar
  2. 2.
    A. P. Tomilov, Yu. M. Kargin, I. N. Chernykh, Elektrokhimiya elementoorganicheskikh soedineniy (elementy IV, V i VI grupp Periodicheskoy sistemy) [Electrochemistry of Organoelement Compounds (The Periodic Table Groups IV, V, and VI Elements)], Nauka, Moscow, 1986, 295 pp. (in Russian).Google Scholar
  3. 3.
    M. C. Carreno, Chem. Rev., 1995, 95, 1717.CrossRefGoogle Scholar
  4. 4.
    I. Fernández, N. Khiar, Chem. Rev., 2003, 103, 3651.CrossRefGoogle Scholar
  5. 5.
    A. R. Kurbangalieva, N. F. Devyatova, A. V. Bogdanov, E. A. Berdnikov, T. G. Mannafov, D. B. Krivolapov, I. A. Litvinov, G. A. Chmutova, Phosphorus, Sulfur, Silicon, Relat. Elem., 2007, 182, 607.CrossRefGoogle Scholar
  6. 6.
    N. F. Devyatova, L. S. Kosolapova, A. R. Kurbangalieva, E. A. Berdnikov, O. A. Lodochnikova, I. A. Litvynov, G. A. Chmutova, Zh. Org. Khim., 2008, 44, 1237 [Russ. J. Gen. Chem. (Engl. Transl.), 2008, 44, 1225].Google Scholar
  7. 7.
    A. R. Kurbangalieva, N. F. Devyatova, L. S. Kosolapova, O. A. Lodochnikova, E. A. Berdnikov, I. A. Litvynov, G. A. Chmutova, Izv. Akad. Nauk, Ser. Khim., 2009, 126 [Russ. Chem. Bull., Int. Ed., 2009, 58].Google Scholar
  8. 8.
    A. Weissberger, E. Proskauer, J. Riddick, E. Toops, Organic Solvents. Physical Properties and Methods of Purification, Interscience Publ., New York-London, 1955.Google Scholar
  9. 9.
    O. N. Vlasov, B. N. Rybakov, L. M. Kogan, Zh. Prikl. Khim. [J. Appl. Chem. USSR], 1968, 41, 373 (in Russian).Google Scholar
  10. 10.
    D. T. Mowry, J. Am. Chem. Soc., 1950, 72, 2535.CrossRefGoogle Scholar
  11. 11.
    P. L. Fishbein, H. W. Moore, Synth. Commun., 1989, 19, 3283.CrossRefGoogle Scholar
  12. 12.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen, M. W. Wong, J. L. Andres, M. Head-Gordon, E. S. Replogle, J. A. Pople, GAUSSIAN 98, Revision A.7, Gaussian, Inc., Pittsburgh PA (USA), 1998.Google Scholar
  13. 13.
    D. N. Laikov, Chem. Phys. Lett., 1997, 281, 151.CrossRefGoogle Scholar
  14. 14.
    J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev., 2005, 105, 2999.CrossRefGoogle Scholar
  15. 15.
    Z. Galus, Teoretyczne podstawy elektroanalizy chemicnej, Panstwowe wydawnictwo naukowe, Warszawa, 1971, 145 (in Polish) [Fundamentals of Electrochemical Analysis, Ellis Horwood, Chichester, 1976, 520 pp. (in English)].Google Scholar
  16. 16.
    V. G. Mayranovskii, Dokl. Akad. Nauk SSSR [Dokl. Chem.], 1985, 284, 386 (in Russian).Google Scholar
  17. 17.
    O. G. Yakovleva, Diss. kand. khim. nauk, Kazan State University, Kazan, 1980, 208 pp. (in Russian).Google Scholar
  18. 18.
    K. Kimura, S. Katsumata, Y. Achiba, T. Yamazaski, S. Iwata, Handbook of He (I) Photoelectron Spectra of Fundamental Organic Molecules, Halsted Press, New York, 1981, 271 pp.Google Scholar
  19. 19.
    G. N. Chuev, M. V. Basilevskii, Usp. Khim., 2003, 72, 827 [Russ. Chem. Rev. (Engl. Transl.), 2003, 72, 735].Google Scholar

Copyright information

© Springer Science+Business Media, Inc.  2009

Authors and Affiliations

  • N. F. Devyatova
    • 1
  • A. R. Kurbangalieva
    • 1
  • V. V. Yanilkin
    • 2
  • G. A. Chmutova
    • 1
  1. 1.Kazan State UniversityKazanRussian Federation
  2. 2.A. E. Arbuzov Institute of Organic and Physical ChemistryKazan Research Center of the Russian Academy of SciencesKazanRussian Federation

Personalised recommendations