Advertisement

Russian Chemical Bulletin

, Volume 57, Issue 9, pp 1842–1849 | Cite as

Intramolecular reorganization 1. Deprotonation of toluene with the CH2CN anion: an analysis in the framework of a gas-phase model

  • I. A. Romanskii
Full Articles

Abstract

A mechanism is proposed of intramolecular reorganization leading to equalization of the energies of reactants and products in a nonequilibrium proton transfer reaction. The model proposed allows one to extend a conventional quantum chemical treatment to gas-phase proton transfer. Taking the reaction of toluene deprotonation with the CH2CN anion (a conjugate base of acetonitrile) as an example, it was shown that the activation energy and its components can be determined from direct ab initio calculations. The effect of disbalance of structural changes relative to the “equilibrium” proton transfer is considered.

Key words

proton transfer intramolecular reorganization proton coordinate gas phase toluene acetonitrile anion the Marcus equation ab initio quantum chemical calculations reorganization energy activation energy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. A. Marcus, J. Phys. Chem., 1968, 72, 891; A. O. Cohen, R. A. Marcus, J. Phys. Chem., 1968, 72, 4249.CrossRefGoogle Scholar
  2. 2.
    V. G. Levich, E. D. German, R. R. Dogonadze, A. M. Kuznetsov, Yu. I. Kharkats, Teor. Eksp. Khim., 1970, 6, 455 [Theor. Exp. Chem., 1970, 6 (Engl. Transl.)]; R. R. Dogonadze, A. M. Kuznetsov, Itogi nauki i tekhniki. Fizicheskaya khimiya. Kinetika [Advances in Science and Technology. Physical Chemistry. Kinetics], VINITI, Moscow, 1973, 2, 152 (in Russian); A. M. Kuznetsov, J. Ulstrup, Can. J. Chem., 1999, 77, 1085.Google Scholar
  3. 3.
    R. R. Dogonadze, A. M. Kuznetsov, Zh. Vsesoyuz. Khim. O-va im. D. I. Mendeleeva, 1974, 19, 242 [Mendeleev Chem. J., 1974, 19 (Engl. Transl.)].Google Scholar
  4. 4.
    D. Bogris, S. Lee, J. T. Hynes, Chem. Phys. Lett., 1989, 162, 19; D. Bogris, J. T. Hynes, Chem. Phys., 1993, 170, 315; P. M. Kiefer, J. T. Hynes, J. Phys. Chem., 2004, 108, 11793, 11809.CrossRefGoogle Scholar
  5. 5.
    A. M. Kuznetsov, J. Ulstrup, Chem. Phys., 1994, 188, 131; A. M. Kuznetsov, E. Ul’strup, Elektrokhimiya, 2004, 40, 1161; 1172 [Russ. J. Electrochem., 2004, 40 (Engl. Transl.)].CrossRefGoogle Scholar
  6. 6.
    M. V. Basilevsky, M. V. Vener, G. V. Davidovich, A. V. Sudakov, Chem. Phys., 1996, 208, 267; M. V. Basilevsky, M. V. Vener, J. Mol. Struct. (THEOCHEM), 1997, 398–399, 81.CrossRefGoogle Scholar
  7. 7.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, GAUSSIAN 03 (Revision C.02), Gaussian, Inc., Wallingford CT, 2004.Google Scholar
  8. 8.
    K. Fukui, Acc. Chem. Res., 1981, 14, 363.CrossRefGoogle Scholar
  9. 9.
    D. Beksic, J. Bertran, J. M. Lluch, J. T. Hynes, J. Phys. Chem., A, 1998, 102, 3977.CrossRefGoogle Scholar
  10. 10.
    M. V. Bazilevskii, M. V. Vener, Usp. Khim., 2003, 72, 3 [Russ. Chem. Rev., 2003, 72 (Engl. Transl.)].Google Scholar
  11. 11.
    I. A. Koppel, J. Koppel, V. Pihl, I. Leito, M. Mishima, V. V. Vlasov, L. M. Yagupolskii, R. W. Taft, J. Chem. Soc., Perkin Trans., 2000, 2, 1125.Google Scholar
  12. 12.
    J. Brickmann, in The Hydrogen Bond — Recent Developments in Theory and Experiments, Eds P. Schuster, G. Zandel, C. Sandorfy, North-Holland Publishing Co, Amsterdam, 1976, 217; M. M. Szczesniak, S. Scheiner, J. Phys. Chem., 1985, 89, 1835.Google Scholar
  13. 13.
    C. F. Bernasconi, Acc. Chem. Res., 1987, 20, 301; C. F. Bernasconi, Acc. Chem. Res., 1992, 25, 9.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc.  2008

Authors and Affiliations

  1. 1.L. Ya. Karpov Physicochemical Research InstituteMoscowRussian Federation

Personalised recommendations