Advertisement

Russian Chemical Bulletin

, Volume 57, Issue 3, pp 520–523 | Cite as

Antioxidant properties of gold nanoparticles studied by ESR spectroscopy

  • N. O. Yakimovich
  • A. A. Ezhevskii
  • D. V. Guseinov
  • L. A. Smirnova
  • T. A. Gracheva
  • K. S. Klychkov
Full Articles

Abstract

The Au-containing nanocomposites were synthesized by UV irradiation followed by the thermal treatment of chitosan oligomer solutions doped by HAuCl4. The size of the formed gold nanoparticles depends on the concentration of the dopant, which is proved by UV—Vis absorption spectroscopy and small-angle X-ray scattering (SAXS). The antioxidant activity of the gold nanoparticles with respect to hydroxy radicals significantly depends on the specific surface of the particles, which was found using the secondary radical spin-trapping technique. The change in the ·OH radical concentration was monitored by the intensity of the ESR signal of the adduct of the spin trap (α-phenyl-N-tert-butylnitrone) with the Me·radicals formed in the reaction of ·OH with DMSO.

Key words

gold nanoparticles antioxidant hydroxy radicals α-phenyl-N-tert-butylnitrone ESR spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Okumura, S. Tsubota, M. Haruta, J. Mol. Catal. A, Chem., 2003, 199, 73.CrossRefGoogle Scholar
  2. 2.
    H. Hori, T. Teranishi, Y. Nakae, Y. Seino, M. Miyake, S. Yamada, Phys. Lett. A, 1999, 263, 406.CrossRefGoogle Scholar
  3. 3.
    Y. Yamamoto, T. Miura, M. Suzuki, N. Kawamura, H. Miyagawa, T. Nakamura, K. Kobayashi, T. Teranishi, H. Hori, Phys. Rev. Lett., 2004, 93, 116801.Google Scholar
  4. 4.
    M. Okumura, Y. Kitagawa, T. Taniguchi, K. Yamaguchi, Polyhedron, 2005, 24, 2330.CrossRefGoogle Scholar
  5. 5.
    E. L. Nagaev, Usp. Fiz. Nauk, 1992, 162, No. 9, 50 [Adv. Phys. Sci., 1992, 35, 747 (Engl. Transl.)].Google Scholar
  6. 6.
    K. Esumi, N. Takei, T. Yoshimura, Colloids Surfaces B: Biointerfaces, 2003, 32, 117.CrossRefGoogle Scholar
  7. 7.
    K. Esumi, H. Houdatsu, T. Yoshimura, Langmuir, 2004, 20, 2536.CrossRefGoogle Scholar
  8. 8.
    K. Liang, B. Chang, M.-C. Tai, F.-H. Cheng, J. Agric. Food Chem., 2001, 49, 4845.CrossRefGoogle Scholar
  9. 9.
    C. Qin, Y. Du, L. Xiao, Y. Liu, H. Yu, J. Appl. Polym. Sci., 2002, 7, 1724.CrossRefGoogle Scholar
  10. 10.
    A. Guinier, Theorie et Technique de la Radiocristallographie, Dunod, Paris, 1956 (in French).Google Scholar
  11. 11.
    D. I. Svergun, L. I. Feigin, Rentgenovskoe i neitronnoe malouglovoe rasseyanie [Small-Angle X-ray and Neutron Scattering], Nauka, Moscow, 1986, 280 pp. (in Russian).Google Scholar
  12. 12.
    Fizika tverdogo tela: Laboratornyi praktikum [Solid State Physics: Laboratory Practical Works], Ed. A. F. Khokhlov, Vysshaya Shkola, Moscow, 2001, Vol. 1, 364 pp. (in Russian).Google Scholar
  13. 13.
    V. E. Zubarev, V. N. Belevskii, L. T. Bugaevskii, Usp. Khim., 1979, 48, 1361 [Russ. Chem. Rev., 1979, 48, 729 (Engl. Transl.)].Google Scholar
  14. 14.
    S. Link, M. El-Sayed, Phys. Chem., 1999, 103, 8410.Google Scholar
  15. 15.
    Y. Kotake, E. G. Janzen, J. Am. Chem. Soc., 1991, 113, 9503.CrossRefGoogle Scholar
  16. 16.
    K. Takeshita, K. Fujii, K. Anzai, T. Ozawa, Free Radical Biology and Medicine, 2004, 36, 1134.CrossRefGoogle Scholar
  17. 17.
    M. B. Kadiiska, R. P. Mason, Spectrochimica Acta, Part A, 2002, 58, 1227.CrossRefGoogle Scholar
  18. 18.
    M. J. Burkitt, R. P. Mason, Proc. Natl. Acad. Sci., 1991, 88, 8440.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc.  2008

Authors and Affiliations

  • N. O. Yakimovich
    • 1
  • A. A. Ezhevskii
    • 1
  • D. V. Guseinov
    • 1
  • L. A. Smirnova
    • 1
  • T. A. Gracheva
    • 1
  • K. S. Klychkov
    • 1
  1. 1.N. I. Lobachevsky Nizhnii Novgorod State UniversityNizhnii NovgorodRussian Federation

Personalised recommendations