Russian Chemical Bulletin

, Volume 57, Issue 2, pp 235–252 | Cite as

Symmetry specified enumeration of substituted derivatives: an easy solution to the complex problem



Several sophisticated methods to solution of symmetry specified enumeration problems are available in the modern literature. In this paper we propose a simple technique that allows one to manually compute the exact numbers of fixed-symmetry derivatives for a given structure either with inclusion or ignoring the substitution patterns. The basic idea of the method suggested consists in the derivation of Pólya-like cycle indices for the automorphism groups of specially constructed orbit partition graphs; the expansion of these indices and subsequent simple calculations result in the desired numbers of substituted derivatives with achiral substituents. Limitations of the new technique (and a method suggested earlier) depend on the relevance of the orbit partitions for particular subgroups of the point symmetry group. For illustration purposes, the results obtained for the prismane (D 3h ) and adamantane (T d ) structures are discussed. In the former case the numbers of substituted derivatives can be found for all subgroups of the D 3h group, whereas in the latter case these numbers can be determined for eight out of eleven subgroups of the T d point symmetry group.

Key words

substituted derivatives Pólya’s theorem symmetry specified enumeration relevance of orbit partitions substituted prismanes adamantane hetero derivatives 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. T. Balaban, in Chemical Applications of Graph Theory, Ed. A. T. Balaban, Academic Press, London, 1976, 63.Google Scholar
  2. 2.
    K. Balasubramanian, Chem. Rev., 1985, 85, 599.CrossRefGoogle Scholar
  3. 3.
    D. J. Klein, D. Babić, N. Trinajstić, Chemical Modelling: Applications and Theory, 2002, 2, 56.Google Scholar
  4. 4.
    D. Babić, D. J. Klein, J. von Knop, N. Trinajstić, Chemical Modelling: Applications and Theory, 2004, 3, 126.Google Scholar
  5. 5.
    W. Hässelbarth, Theor. Chim. Acta, 1985, 67, 339.CrossRefGoogle Scholar
  6. 6.
    A. Kerber, MATCH Commun. Math. Comput. Chem., 2002, 46, 151.Google Scholar
  7. 7.
    C. A. Mead, J. Am. Chem. Soc., 1987, 109, 2130.CrossRefGoogle Scholar
  8. 8.
    J. Brocas, J. Am. Chem. Soc., 1986, 108, 1135.CrossRefGoogle Scholar
  9. 9.
    S. Fujita, Theor. Chim. Acta, 1989, 76, 247.CrossRefGoogle Scholar
  10. 10.
    S. Fujita, Symmetry and Combinatorial Enumeration in Chemistry, Springer-Verlag, Berlin, 1991, 368 pp.Google Scholar
  11. 11.
    E. K. Lloyd, in Applications of Graphs in Chemistry and Physics, Eds J. W. Kennedy, L. V. Quintas, North-Holland, Amsterdam, 1988, 289.Google Scholar
  12. 12.
    Y. Shao, J. Wu, Y. Jiang, Chem. Phys. Lett., 1996, 248, 366.CrossRefGoogle Scholar
  13. 13.
    S. Fujita, Bull. Chem. Soc. Jpn, 2001, 74, 1585.CrossRefGoogle Scholar
  14. 14.
    C. A. Mead, J. Am. Chem. Soc., 1992, 114, 4018.Google Scholar
  15. 15.
    G. Pólya, Acta Math., 1937, 68, 145.CrossRefGoogle Scholar
  16. 16.
    P. J. Hansen, P. C. Jurs, J. Chem. Educ., 1988, 65, 661.Google Scholar
  17. 17.
    S. Pevac, G. Crundwell, J. Chem. Educ., 2000, 77, 1358.CrossRefGoogle Scholar
  18. 18.
    L. M. Masinter, N. S. Sridharan, R. E. Carhart, D. H. Smith, J. Am. Chem. Soc., 1974, 96, 7714.CrossRefGoogle Scholar
  19. 19.
    A. C. Lunn, J. K. Senior, J. Phys. Chem., 1929, 33, 1027.CrossRefGoogle Scholar
  20. 20.
    D. J. Klein, A. H. Cowley, J. Am. Chem. Soc., 1975, 97, 1633.CrossRefGoogle Scholar
  21. 21.
    M. van Almsick, H. Dolhaine, H. Hönig, J. Chem. Inf. Comput. Sci., 2000, 40, 956.Google Scholar
  22. 22.
    S. S. Tratch, O. A. Lomova, D. V. Sukhachev, V. A. Palyulin, N. S. Zefirov, J. Chem. Inf. Comput. Sci., 1992, 32, 130.Google Scholar
  23. 23.
    S. S. Tratch, M. S. Molchanova, N. S. Zefirov, MATCH Commun. Math. Comput. Chem., 2002, 46, 275.Google Scholar
  24. 24.
    S. S. Tratch, Zhurn. Organ. Khim., 1995, 31, 1320 [Russ. J. Org. Chem., 1995, 31, 1189 (Engl. Transl.)].Google Scholar
  25. 25.
    I. V. Krivoshei, V. Yu. Vvedenskii, Teor. Eksp. Khim., 1967, 3, 508 [Theor. Exp. Chem., 1967, 3, 296 (Engl. Transl.)].Google Scholar
  26. 26.
    A. T. Balaban, Rev. Roum. Chim., 1974, 19, 1323.Google Scholar
  27. 27.
    N. S. Zefirov, S. S. Tratch, O. S. Chizhov, Karkasnye i politsiklicheskie soedineniya. Molekulyarnyi dizain na osnove printsipa izomorfnogo zameshcheniya [Cage and Polycyclic Compounds. Molecular Design Based on the Izomorphic Substitution Principle], VINITI, Moscow, 1979, 88 pp. (in Russian).Google Scholar
  28. 28.
    V. R. Rosenfeld, MATCH Commun. Math. Comput. Chem., 2001, 43, 111.Google Scholar
  29. 29.
    R. L. Flurry, Jr., Symmetry Groups: Theory and Chemical Applications, Englewood Cliffs, 1980.Google Scholar
  30. 30.
    B. D. McKay, Congressus Numerantium, 1981, 30, 45.Google Scholar
  31. 31.
    S. S. Tratch, Dr. Sc. (Chem.) Thesis, M. V. Lomonosov Moscow State Univ., Moscow, 1993, 2, 180 (in Russian).Google Scholar
  32. 32.
    K. Balasubramanian, J. Chem. Inf. Comput. Sci., 1994, 34, 621.Google Scholar
  33. 33.
    A. Kerber, Algebraic Combinatorics Via Finite Group Actions, BI-Wiss.-Verl., Mannheim, 1991, 436 pp.Google Scholar
  34. 34.
    K. Ebert, H. Ederer, Computeranwendungen in der Chemie, Weinheim, 1985.Google Scholar
  35. 35.
    V. P. D’yakonov, Spravochnik po algoritmam i programmam na yazyke beisik dlya personal’nykh EVM [Handbook on BASIC Algorithms and Programs for Personal Computers], Nauka, Moscow, 1987, 240 pp. (in Russian).Google Scholar
  36. 36.
    S. Fujita, Bull. Chem. Soc. Jpn, 1990, 63, 1876.CrossRefGoogle Scholar
  37. 37.
    S. Fujita, J. Math. Chem., 1990, 5, 121.CrossRefGoogle Scholar
  38. 38.
    S. Fujita, Tetrahedron, 1990, 46, 365.CrossRefGoogle Scholar
  39. 39.
    S. Fujita, Bull. Chem. Soc. Jpn, 1990, 63, 203.CrossRefGoogle Scholar
  40. 40.
    S. S. Tratch and N. S. Zefirov, Tez. dokl. 4-i Vserossiiskoi konf. “Molekulyarnoe modelirovanie” (Moskva, 12–15 aprelya 2005 g.) [Abstrs 4th All-Russia Conference on Molecular Modeling (Moscow, Russia, April 12–15, 2005)], Москва, 2005, 19 (in Russian).Google Scholar

Copyright information

© Springer Science+Business Media, Inc.  2008

Authors and Affiliations

  1. 1.Department of ChemistryM. V. Lomonosov Moscow State UniversityMoscowRussian Federation

Personalised recommendations