Russian Chemical Bulletin

, Volume 56, Issue 10, pp 2026–2033 | Cite as

Spin crossover in polyaniline

  • A. V. Kulikov
  • A. S. Komissarova
  • A. F. Shestakov
  • L. S. Fokeeva


Solutions of the basic form of polyaniline in m-cresol were studied by ESR and optical spectroscopy in the visible region. m-Cresol can slowly (during one month) protonate polyaniline. For the first time characteristic features of spin crossover were found: sharp changes in the magnetic susceptibility and the ESR line width of polyaniline at ∼200 and 250 K, a smooth decrease in the susceptibility and absorption with the temperature increase from 293 to 423 K, and the temperature hysteresis. The temperature-induced structural rearrangements of polyaniline are caused, most likely, by singlet-triplet transitions in relatively short sections of the polymer chain. The model of short sections permits to explain the origin of the temperature-independent part of susceptibility. Quantum-chemical calculations for the aniline dimers and tetramers describe correctly the singlet-triplet splitting value, thermochromism, and HFS constants in the spectrum of polyaniline.

Key words

polyaniline ESR spectroscopy spin crossover quantum chemistry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Gutlich, Y. Garcia, and H. A. Goodwin, Chem. Soc. Rev., 2000, 29, 419.CrossRefGoogle Scholar
  2. 2.
    H. Spiering, T. Kohlhaas, H. Romstedt, A. Hauser, C. Bruns-Yilmaz, J. Kusz, and P. Gutlich, Coord. Chem. Rev., 1999, 190, 629.CrossRefGoogle Scholar
  3. 3.
    V. I. Ovcharenko, S. V. Fokin, G. V. Romanenko, Yu. G. Shvedenkov, V. N. Ikorskii, E. V. Tretyakov, and S. F. Vasilevskii, J. Sruct. Chem., 2002, 1, 153.CrossRefGoogle Scholar
  4. 4.
    G. Cik, F. Sersen, and L. Dlhan, Synth. Met., 2005, 151, 124.CrossRefGoogle Scholar
  5. 5.
    P. K. Kahol, A. Raghunathan, and B. J. McCormick, Synth. Met., 2004, 140, 261.CrossRefGoogle Scholar
  6. 6.
    P. K. Kahol, A. Raghunathan, B. J. McCormick, and A. J. Epstein, Synth. Met., 1999, 101, 815.CrossRefGoogle Scholar
  7. 7.
    A. Raghunathan, P. K. Kahol, J. C. Ho, Y. Y. Chen, Y. D. Yao, Y. S. Lin, and B. Wessing, Phys. Rev. B, 1998, 58, 15955.CrossRefGoogle Scholar
  8. 8.
    T. Masui, T. Ishiguro, and J. Tsukamoto, Synth. Met., 1999, 104, 179.CrossRefGoogle Scholar
  9. 9.
    Z. H. Wang, E. M. Scherr, A. G. MacDiarmid, and A. J. Epstein, Phys. Rev. B, 1992, 45, 4190.CrossRefGoogle Scholar
  10. 10.
    A. V. Kulikov, A. S. Komissarova, A. G. Ryabenko, L. S. Fokeeva, I. G. Shunina, and O. V. Belonogova, Izv. Akad. Nauk, Ser. Khim., 2005, 2701 [Russ. Chem. Bull., Int. Ed., 2005, 54, 2794].Google Scholar
  11. 11.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, GAUSSIAN-98, Revision A.7, Gaussian, Inc., Pittsburgh (PA), 1998.Google Scholar
  12. 12.
    A. Raghunathan, P. K. Kahol, and D. J. McCormic, Synth. Met., 1999, 100, 205.CrossRefGoogle Scholar
  13. 13.
    J. M. Grinder and A. J. Epstein, Phys. Rev. B, 1990, 41, 10674.CrossRefGoogle Scholar
  14. 14.
    I. A. Misurkin, T. S. Zhuravleva, V. M. Geskin, V. Gulbinas, S. Pakalnis, and V. Butvilos, Phys. Rev. B, 1994, 49, 7178.CrossRefGoogle Scholar
  15. 15.
    I. A. Misurkin, Khim. Fiz. [Chemical Physics], 1996, 15, 110 (in Russian).Google Scholar
  16. 16.
    A. V. Kulikov, V. R. Bogatyrenko, O. V. Belonogova, L. S. Fokeeva, A. V. Lebedev, T. A. Echmaeva, and I. G. Shunina, Izv. Akad. Nauk, Ser. Khim., 2002, 2057 [Russ. Chem. Bull., Int. Ed., 2002, 51, 2216].Google Scholar
  17. 17.
    A. V. Kulikov, Ya. L. Kogan, and L. S. Fokeeva, Synth. Metals, 1995, 69, 223.CrossRefGoogle Scholar
  18. 18.
    A. V. Kulikov, V. R. Bogatyrenko, O. V. Belonogova, and L. S. Fokeeva, Izv. Akad. Nauk, Ser. Khim., 1999, 2293 [Russ. Chem. Bull., 1999, 48, 2267 (Engl. Transl.)].Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • A. V. Kulikov
    • 1
  • A. S. Komissarova
    • 1
  • A. F. Shestakov
    • 1
  • L. S. Fokeeva
    • 1
  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow RegionRussian Federation

Personalised recommendations