Advertisement

Russian Chemical Bulletin

, Volume 56, Issue 9, pp 1782–1786 | Cite as

Synthesis, structure, and magnetic properties of the cobalt(II) 1,3,5-benzenetricarboxylate layered coordination polymer

  • D. N. Dybtsev
  • M. P. Yutkin
  • E. V. Peresypkina
  • A. V. Virovets
  • Y. Hasegawa
  • H. Nishihara
  • V. P. Fedin
Article

Abstract

The reaction of Co(NO3)2·6H2O with 1,3,5-benzenetricarboxylic acid (H3btc, trimesic acid) in DMF at 100 °C afforded the coordination polymer [Co3(dmf)6(btc)(Hbtc)(H2btc)]··9H2O (1) (dmf is N,N′-dimethylformamide, DMF). According to the X-ray diffraction study, the metal-organic coordination polymer is composed of planar honeycomb (6,3) networks, in which the organic benzenetricarboxylate anions and the inorganic Co2+ cations play a role of three-connected nodes. Disordered water molecules are intercalated between the layers. A study of the magnetic properties showed the presence of a weak antiferromagnetic coupling between the Co2+ ions (S = 3/2).

Key words

cobalt coordination polymers network structures X-ray diffraction study magnetic properties antiferromagnetic coupling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Kitagawa, R. Kitaura, and S.-i. Noro, Angew. Chem., 2004, 116, 2388.CrossRefGoogle Scholar
  2. 2.
    C. Janiak, Dalton Trans., 2003, 2781.Google Scholar
  3. 3.
    D. N. Dybtsev, A. L. Nuzhdin, H. Chun, K. P. Bryliakov, E. P. Talsi, V. P. Fedin, and K. Kim, Angew. Chem., Int. Ed., 2006, 45, 916.CrossRefGoogle Scholar
  4. 4.
    J. S. Seo, D. Wand, H. Lee, S. I. Jun, J. Oh, Y. Jeon, and K. Kim, Nature, 2000, 404, 982.CrossRefGoogle Scholar
  5. 5.
    D. N. Dybtsev, H. Chun, S. H. Yoon, D. Kim, and K. Kim, J. Am. Chem. Soc., 2004, 126, 32.CrossRefGoogle Scholar
  6. 6.
    K. Uemura, S. Kitagawa, M. Kondo, K. Fukui, R. Kitaura, H.-C. Chang, and T. Mizutani, Chem. Eur. J., 2002, 8, 3587.CrossRefGoogle Scholar
  7. 7.
    W. Lin, O. R. Evans, R.-G. Xiong, and Z. Wang, J. Am. Chem. Soc., 1998, 120, 13272.CrossRefGoogle Scholar
  8. 8.
    M. Clemente-Léon, E. Coronado, J.-R. Galán-Mascarós, and C. J. Gómez-García, Chem. Commun., 1997, 1727.Google Scholar
  9. 9.
    L. M. Toma, R. Lescouëzec, L. D. Toma, F. Lloret, M. Julve, J. Vaissermann, and M. Andruh, J. Chem. Soc., Dalton Trans., 2002, 3171.Google Scholar
  10. 10.
    V. I. Ovcharenko and R. Z. Sagdeev, Usp. Khim., 1999, 68, 381 [Russ. Chem. Rev., 1999, 68 (Engl. Transl.)].Google Scholar
  11. 11.
    S. Ferlay, T. Mallah, R. Ouahes, P. Veillet, and M. Verdaguer, Nature, 1995, 378, 701.CrossRefGoogle Scholar
  12. 12.
    F. H. Allen, Acta Cryst., 2002, B58, 380.Google Scholar
  13. 13.
    C. Livage, N. Guillou, J. Marrot, and G. Férey, Chem. Mater., 2001, 13, 4387.CrossRefGoogle Scholar
  14. 14.
    L. C. Porter, M. H. Dickman, and R. J. Doedens, Inorg. Chem., 1988, 27, 1548.CrossRefGoogle Scholar
  15. 15.
    X.-Y. Wang, L. Gan, S.-W. Zhang, and S. Gao, Inorg. Chem., 2004, 43, 4615.CrossRefGoogle Scholar
  16. 16.
    R. L. Carlin and A. J. Van-Duyneveldt, Magnetic Properties of Transition Metal Compounds, Springer-Verlag, New York, 1977.Google Scholar
  17. 17.
    APEX2 (Version 1.08), SAINT (Version 7.03), and SADABS (Version 2.11). Bruker Advanced X-ray Solutions, Bruker AXS Inc., Madison, Wisconsin, USA, 2004.Google Scholar
  18. 18.
    G. M. Sheldrick, SHELXS97 and SHELXL97. Programs for the Refinement of Crystal Structures, Göttingen University, Göttingen, Germany, 1997.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • D. N. Dybtsev
    • 1
  • M. P. Yutkin
    • 1
  • E. V. Peresypkina
    • 1
  • A. V. Virovets
    • 1
  • Y. Hasegawa
    • 2
  • H. Nishihara
    • 2
  • V. P. Fedin
    • 1
  1. 1.A. V. Nikolaev Institute of Inorganic ChemistrySiberian Branch of the Russian Academy of SciencesNovosibirskRussian Federation
  2. 2.Department of Chemistry, School of ScienceThe University of TokyoTokyoJapan

Personalised recommendations