Russian Chemical Bulletin

, Volume 56, Issue 5, pp 890–894 | Cite as

Experimental determination of the dependence of the free electron—hole recombination rate constant on the band gap in semiconductors of the AIIBVI and AIBVII types

  • G. F. Novikov
  • N. A. Radychev


A correlation between the recombination rate constant of free electrons and holes (k r) and the band gap (E g) of semiconductors (AgCl, AgBr, CdxZn1−x S, CdSe, CdTe, and their solid solutions) at 295 K was found. The experimental data were obtained by the UHF photoconductivity (36 GHz) using current carrier generation by laser pulses (λ = 337 nm, pulse duration 8 ns). A decrease in E g in a range of 1.5–3 eV increases k r by 1.5 orders of magnitude according to the law close to exponential.

Key words

recombination electron hole rate constant band gap 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. L. Bonch-Bruevich and S. G. Kalashnikov, Fizika Poluprovodnikov [Physics of Semiconductors], Nauka, Moscow, 1977, 672 (in Russian).Google Scholar
  2. 2.
    G. F. Novikov and B. I. Golovanov, J. Imaging Sci., 1995, 39, 520.Google Scholar
  3. 3.
    G. F. Novikov, B. I. Golovanov, and N. A. Tikhonina, Izv. Akad. Nauk, Ser. Khim., 1996, 2234 [Russ. Chem. Bull., 1996, 45, 2118 (Engl. Transl.)].Google Scholar
  4. 4.
    A. V. Tataurov, Yu. V. Meteleva, N. L. Sermakasheva, and G. F. Novikov, Izv. Akad. Nauk, Ser. Khim., 2003, 1137 [Russ. Chem. Bull., Int. Ed., 2003, 52, 1201 (Engl. Transl.)].Google Scholar
  5. 5.
    M. V. Gapanovich, N. A. Radychev, E. V. Rabenok, D. N. Voilov, I. N. Odin, and G. F. Novikov, Khim. Vys. Energii, 2007, 41, 159 [High Energy Chem., 2007, 41, No. 2 (Engl. Transl.)].Google Scholar
  6. 6.
    N. A. Radychev and G. F. Novikov, Izv. Akad. Nauk, Ser. Khim., 2006, 740 [Russ. Chem. Bull., 2006, 55, 766 (Engl. Transl.)].Google Scholar
  7. 7.
    Yu. V. Meteleva and G. F. Novikov, Fiz. Tekhn. Poluprovodnikov, 2006, 40, 1167 [Semiconductors, 2006, 40 (Engl. Transl.)].Google Scholar
  8. 8.
    V. N. Semenov and A. V. Naumov, Vestn. VGU, Ser. Khim., Biol. [Bulletin of Volgograd State Univ., Ser. Chem., Biol.], 2000, No. 2, 50 (in Russian).Google Scholar
  9. 9.
    G. F. Novikov, B. I. Golovanov, and M. V. Alfimov, Khim. Vys. Energii, 1995, 29, 429 [High Energy Chem., 1995, 29 (Engl. Transl.)].Google Scholar
  10. 10.
    N. L. Sermakasheva, G. F. Novikov, Yu. M. Shul’ga, and V. N. Semenov, Fiz. Tekhn. Poluprovodnikov, 2004, 38, 395 [Semiconductors, 2004, 38, 380 (Engl. Transl.)].Google Scholar
  11. 11.
    V. S. Vavilov, Usp. Fiz. Nauk, 1994, 164, 287 [Russ. Phys. Rev., 1994, 164 (Engl. Transl.)].CrossRefGoogle Scholar
  12. 12.
    B. I. Golovanov and G. F. Novikov, Sci. Appl. Photo, 1998, 40, 21; V. I. Saunders, R. W. Tyler, and W. West, J. Chem. Phys., 1962, 37, 1126.Google Scholar
  13. 13.
    G. F. Novikov, E. V. Rabenok, and M. V. Alfimov, Khim. Vys. Energii, 2005, 39, 1 [High Energy Chem., 2005, 39, 167 (Engl. Transl.)].Google Scholar
  14. 14.
    Yu. V. Meteleva, Ph. D. (Chem.) Thesis, Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, 2002, 164 pp. (in Russian).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow RegionRussian Federation

Personalised recommendations