Russian Chemical Bulletin

, Volume 56, Issue 3, pp 397–406 | Cite as

Quantum chemical investigation of the interaction of the Pt6 cluster with oxides of different nature

  • M. N. Mikhailov
  • L. M. Kustov
  • V. Z. Mordkovich


The interaction of a Pt6 nanoparticle with different oxide supports, viz., γ-Al2O3, FAU and MFI zeolites, was investigated using the density functional theory. The interaction with the basic oxygen anions of the lattice and with hydroxyl groups of the support affects the electronic structure of the metal particles. The transfer of H atoms of the hydroxyl groups to the metal particle suppresses the Brönsted acidity of the support, and the activation energy of proton transfer decreases with an increase in the acidity of the support. The potential energy profiles were calculated for the transfer processes, and changes in the electronic structures and charge distribution of the supported particles were outlined. The H atom transfer results in positive charging by the metal particles, whereas the interaction with basic sites leads to the appearance of electron-enriched metal clusters.

Key words

platinum particles alumina zeolites FAU and MFI hydrogen spillover density functional theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Bandiera, C. Naccache, and B. Imelik, J. Chim. Phys.—Chim. Biol., 1978, 75, 406.Google Scholar
  2. 2.
    J. Chupin, N. S. Gnep, S. Lacombe, and M. Guisnet, Appl. Catal., A, 2001, 206, 43.CrossRefGoogle Scholar
  3. 3.
    E. Blomsma, J. A. Martens, and P. A. Jacobs, Stud. Surf. Sci. Catal. B, 1997, 105, 909.Google Scholar
  4. 4.
    M. Watanabe, H. Uchida, H. Igarashi, and M. Suzuki, Chem. Lett., 1995, 21.Google Scholar
  5. 5.
    M. Iwamoto, A. M. Hernandez, and T. Zengyro, Chem. Commun. (Cambridge), 1997, 37.Google Scholar
  6. 6.
    E. V. Benvenutti, L. Franken, C. C. Moro, and C. U. Davanzo, Langmuir, 1999, 15, 37.CrossRefGoogle Scholar
  7. 7.
    R. J. Davis, Heterog. Chem. Rev., 1994, 1, 41.Google Scholar
  8. 8.
    J.-L. Dong, J.-H. Zhu, and Q.-H. Xu, Appl. Catal., A, 1994, 112, 105.CrossRefGoogle Scholar
  9. 9.
    L. B. Galperin, J. C. Bricker, and J. R. Holmgren, Appl. Catal., A, 2003, 239, 297.CrossRefGoogle Scholar
  10. 10.
    M. Sugioka, C. Tochiyama, Y. Matsumoto, and F. Sado, Stud. Surf. Sci. Catal., 1995, 94, 544.CrossRefGoogle Scholar
  11. 11.
    T. V. Vasina, O. V. Masloboishchikova, E. G. Khelkovskaya-Sergeeva, L. M. Kustov, and J. I. Houzvička, Stud. Surf. Sci. Catal., 2001, 135, 4207.Google Scholar
  12. 12.
    M. A. Arribas and A. Martinez, Appl. Catal., A, 2002, 230, 203.CrossRefGoogle Scholar
  13. 13.
    N. J. Noordhoek, D. Schuring, F. J. M. M. de Gauw, B. G. Anderson, A. M. de Jong, M. J. A. de Voigt, and R. A. van Santen, Ind. Eng. Chem. Res., 2002, 41, 1973.CrossRefGoogle Scholar
  14. 14.
    P. N. Kuznetsov, J. Catal., 2003, 218, 2.CrossRefGoogle Scholar
  15. 15.
    P. B. Weisz and E. W. Swegler, Science, 1957, 126, 31.CrossRefGoogle Scholar
  16. 16.
    A. Kuhlmann, F. Roessner, W. Schwieger, O. Gravenhorst, and T. Selvam, Catal. Today, 2004, 97, 303.CrossRefGoogle Scholar
  17. 17.
    D. Kubička, N. Kumar, T. Venäläinen, H. Karhu, I. Kubičková, H. Österholm, and D. Yu. Murzin, J. Phys. Chem., B, 2006, 110, 4937.CrossRefGoogle Scholar
  18. 18.
    G. N. Vayssilov, B. C. Gates, and N. Rösch, Angew. Chem., Int. Ed., 2003, 42, 1391.CrossRefGoogle Scholar
  19. 19.
    G. N. Vayssilov and N. Rösch, Phys. Chem. Chem. Phys., 2005, 7, 4019.CrossRefGoogle Scholar
  20. 20.
    P. Treesukol, K. Srisuk, J. Limtrakul, and T. N. Truong, J. Phys. Chem., B, 2005, 109, 11940.CrossRefGoogle Scholar
  21. 21.
    A. D. Becke, J. Chem. Phys., 1993, 98, 5648.CrossRefGoogle Scholar
  22. 22.
    C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B, 1988, 37, 785.CrossRefGoogle Scholar
  23. 23.
    S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys., 1980, 58, 1200.CrossRefGoogle Scholar
  24. 24.
    W. J. Stevens, M. Krauss, H. Basch, and P. G. Jasien, Can. J. Chem., 1992, 70, 612.CrossRefGoogle Scholar
  25. 25.
    M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. J. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery, J. Comput. Chem., 1993, 14, 1347.CrossRefGoogle Scholar
  26. 26.
    A. A. Granovsky, PC GAMESS Version 7.0,
  27. 27.
    E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, and F. Weinhold, NBO 4. M, Theoretical Chemistry Institute, University of Wisconsin, Madison (WI), 1999.Google Scholar
  28. 28.
    S. I. Gorelsky, AOMix: Program for Molecular Orbital Analysis,, York University, Toronto (Canada), 1997.Google Scholar
  29. 29.
    S. I. Gorelsky and A. B. P. Lever, J. Organomet. Chem., 2001, 187, 635.Google Scholar
  30. 30.
    O. Maresca, A. Allouche, J. P. Aycard, M. Rajzmann, S. Clemendot, and F. Hutschka, J. Mol. Struct. (THEOCHEM), 2000, 505, 81.CrossRefGoogle Scholar
  31. 31.
    E. J. W. Verwey, Z. Kristallogr., 1935, 91, 317.Google Scholar
  32. 32.
    W. C. Conner, Jr., and J. L. Falconer, Chem. Rev., 1995, 95, 759.CrossRefGoogle Scholar
  33. 33.
    W. Löwenstein, Am. Mineral., 1954, 39, 92.Google Scholar
  34. 34.
    D. H. Olson, Zeolites, 1995, 15, 439.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • M. N. Mikhailov
    • 1
    • 2
  • L. M. Kustov
    • 1
  • V. Z. Mordkovich
    • 2
  1. 1.N. D. Zelinsky Institute of Organic ChemistryRussian Academy of SciencesMoscowRussian Federation
  2. 2.United Research and Development CenterMoscowRussian Federation

Personalised recommendations