Advertisement

Russian Chemical Bulletin

, Volume 55, Issue 11, pp 1869–1882 | Cite as

1,3-dipolar cycloaddition of nitrones to free and coordinated nitriles: Routes to control the synthesis of 2,3-dihydro-1,2,4-oxadiazoles

  • N. A. Bokach
  • V. Yu. Kukushkin
Reviews

Abstract

Data on 1,3-dipolar cycloaddition of nitrones to free and coordinated nitriles producing 2,3-dihydro-1,2,4-oxadiazoles (or Δ4-1,2,4-oxadiazolines) are summarized. The latter compounds belong to the virtually unknown class of heterocyclic systems. The main factors responsible for the cycloaddition reactions are discussed. Particular attention is given to the role of metal centers in controlling the synthesis of 2,3-dihydro-1,2,4-oxadiazoles.

Key words

1,3-dipolar cycloaddition nitriles nitrile complexes nitrones reactivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. L. Gilchrist, Heterocyclic Chemistry, Wiley, New York, 1992.Google Scholar
  2. 2.
    K. V. Gothelf and K. A. Jørgensen, Chem. Rev., 1998, 98, 863.CrossRefGoogle Scholar
  3. 3.
    R. Huisgen, Angew. Chem., 1963, 75, 604.Google Scholar
  4. 4.
    K. B. G. Torssel, Nitrile Oxides, Nitrones and Nitronates in Organic Synthesis, Novel Strategies in Synthesis, Organic Nitro Chemistry, VCH Publishers, Inc, 1988.Google Scholar
  5. 5.
    H. M. I. Osborn, N. Gemmell, and L. M. Harwood, J. Chem. Soc., Perkin Trans. 1, 2002, 2419, and references therein.Google Scholar
  6. 6.
    K. V. Gothelf and K. A. Jørgensen, Chem. Commun., 2000, 1449.Google Scholar
  7. 7.
    J. P. Adams and J. R. Paterson, J. Chem. Soc., Perkin Trans. 1, 2000, 3695.Google Scholar
  8. 8.
    J. P. Adams and J. R. Paterson, J. Chem. Soc., Perkin Trans. 1, 1999, 749.Google Scholar
  9. 9.
    M. Frederickson, Tetrahedron, 1997, 53, 403.CrossRefGoogle Scholar
  10. 10.
    Sk. Sahabuddin, A. Roy, M. G. B. Drew, B. G. Roy, B. Achari, and S. B. Mandal, J. Org. Chem., 2006, 71, 5980.CrossRefGoogle Scholar
  11. 11.
    A. Chatterjee and P. K. Bhattacharya, J. Org. Chem., 2006, 71, 345.CrossRefGoogle Scholar
  12. 12.
    A. Basak and S. C. Ghosh, Tetrahedron Lett., 2005, 46, 7385.CrossRefGoogle Scholar
  13. 13.
    S. Moutel, M. Shipman, O. R. Martin, K. Ikeda, and N. Asano, Tetrahedron: Asymmetry, 2005, 16, 487.CrossRefGoogle Scholar
  14. 14.
    J. Yu, J. DePue, and D. Kronenthal, Tetrahedron Lett., 2004, 45, 7247.CrossRefGoogle Scholar
  15. 15.
    K. Singha, A. Roy, P. K. Dutta, S. Tripathi, S. Sahabuddin, B. Achari, and S. B. Mandal, J. Org. Chem., 2004, 69, 6507.CrossRefGoogle Scholar
  16. 16.
    I. A. O’Neil, V. E. Ramos, G. L. Ellis, Ed Cleator, A. P. Chorlton, D. J. Tapolczay, and S. B. Kalindjian, Tetrahedron Lett., 2004, 45, 3659.CrossRefGoogle Scholar
  17. 17.
    O. Tamura, T. Shiro, A. Toyao, and H. Ishibashi, Chem. Commun., 2003, 2678.Google Scholar
  18. 18.
    H. Ali Dondas, R. Grigg, S. Thibault, W. Anthony Thomas, and M. Thornton-Pett, Tetrahedron, 2002, 58, 5827.CrossRefGoogle Scholar
  19. 19.
    T. Aftab, R. Grigg, M. Ladlow, V. Sridharan, and M. Thornton-Pett, Chem. Commun., 2002, 1754.Google Scholar
  20. 20.
    V. K. Aggarwal, S. J. Roseblade, J. K. Barrell, and R. Alexander, Org. Lett., 2002, 4, 1227.CrossRefGoogle Scholar
  21. 21.
    Q. Zhao, F. Han, and D. L. Romero, J. Org. Chem., 2002, 67, 3317.CrossRefGoogle Scholar
  22. 22.
    S. Kanemasa, N. Ueno, and M. Shirahase, Tetrahedron Lett., 2002, 43, 657.CrossRefGoogle Scholar
  23. 23.
    J. D. White, P. R. Blakemore, E. A. Korf, and A. F. T. Yokochi, Org. Lett., 2001, 3, 413.CrossRefGoogle Scholar
  24. 24.
    V. Ondrus, M. Orsag, L. Fisera, and N. Pronayova, Tetrahedron, 1999, 55, 10425.Google Scholar
  25. 25.
    M. Noguchi, H. Okada, S. Nishimura, Y. Yamagata, S. Takamura, M. Tanaka, A. Kakehi, and H. Yamamoto, J. Chem. Soc., Perkin Trans. 1, 1999, 185.Google Scholar
  26. 26.
    A. Arnone, G. Broggini, L. Bruche, G. Molteni, and G. Zecchi, J. Chem. Res. (S), 1998, 188.Google Scholar
  27. 27.
    K. Jensen, K. V. Gothelf, R. G. Hazell, and K. A. Jørgensen, J. Org. Chem., 1997, 62, 2471.CrossRefGoogle Scholar
  28. 28.
    P. de March, M. Figueredo, J. Font, S. Milan, A. Alvarez-Larena, J. F. Piniella, and E. Molins, Tetrahedron, 1997, 53, 2979.CrossRefGoogle Scholar
  29. 29.
    U. Chicacchio, A. Rescifina, F. Casuscelli, A. Piperno, V. Pisani, and R. Romeo, Tetrahedron, 1996, 52, 14311.Google Scholar
  30. 30.
    A. Goti, F. Cardona, A. Brandi, S. Picasso, and P. Vogel, Tetrahedron: Asymmetry, 1996, 7, 1659.CrossRefGoogle Scholar
  31. 31.
    G. Broggini, F. Folcio, N. Sardone, M. Sonzogni, and G. Zecchi, Tetrahedron: Asymmetry, 1996, 7, 797.CrossRefGoogle Scholar
  32. 32.
    A. Arnone, L. Bruche, L. Baranti, and G. Zecchi, J. Chem. Res. (S), 1995, 282.Google Scholar
  33. 33.
    U. Chiacchio, G. Buemi, F. Casuscelli, A. Procopio, A. Rescifina, and R. Romeo, Tetrahedron, 1994, 50, 5503.CrossRefGoogle Scholar
  34. 34.
    P. J. Smith, D. J. Soose, and C. S. Wilcox, J. Am. Chem. Soc., 1991, 113, 7412.CrossRefGoogle Scholar
  35. 35.
    D. M. Tschaen, R. R. Whittle, and S. M. Weinreb, J. Org. Chem., 1986, 51, 2604.CrossRefGoogle Scholar
  36. 36.
    P. DeShong and J. M. Leginus, J. Am. Chem. Soc., 1983, 105, 1686.CrossRefGoogle Scholar
  37. 37.
    A. Padwa, K. Koehler, and A. Rodriguez, J. Am. Chem. Soc., 1981, 103, 4974.CrossRefGoogle Scholar
  38. 38.
    P. Merino, Science of Synthesis, 2004, 27, 511 and references therein.Google Scholar
  39. 39.
    E. N. Zil’berman, Reaktsii nitrilov [Reactions of Nitriles], Khimiya, Moscow, 1972 (in Russian).Google Scholar
  40. 40.
    V. Yu. Kukushkin and A. J. L. Pombeiro, Chem. Rev., 2002, 102, 1771.CrossRefGoogle Scholar
  41. 41.
    Y. R. Do, S. Ch. Nam, K. K. Sung, S. Ch. Eun, and H. S. Il, J. Chem. Soc., Perkin Trans. 2, 1999, 81.Google Scholar
  42. 42.
    W. Szczepankiewicz, J. Suwinski, and Z. Karczmarzyk, Khim. Geterotsikl. Soedin., 2004, 932 [Chem. Heterocycl. Compd., 2004, 40, 801 (Engl. Transl.)].Google Scholar
  43. 43.
    C. Balsamini, G. Spadoni, A. Bedini, G. Tarzia, M. Lanfranchi, and M. A. Pellinghelli, J. Heterocycl. Chem., 1992, 29, 1593.Google Scholar
  44. 44.
    M. Fred, J. Heterocycl. Chem., 1972, 9, 739.Google Scholar
  45. 45.
    R. Huisgen, W. Mack, and K. Bast, Pat. DE 19610728; Chem. Abstrs, 1964, 61, 47917.Google Scholar
  46. 46.
    V. G. Andrianov, E. N. Rozhkov, and A. V. Eremeev, Khim. Geterotsikl. Soedin., 1991, 262 [Chem. Heterocycl. Compd., 1991 (Engl. Transl.)].Google Scholar
  47. 47.
    J. Azizian, M. Madani, and S. Souzangarzadeh, Synth. Commun., 2005, 35, 765.Google Scholar
  48. 48.
    R. M. Srivastava, Quimica Nova, 1995, 18, 303.Google Scholar
  49. 49.
    M. R. Manrao, K. K. Gill, J. R. Sharma, and P. S. Kalsi, Indian J. Heterocycl. Chem., 1995, 5, 151.Google Scholar
  50. 50.
    D. B. Repke, H. P. Albrecht, and J. G. Moffatt, J. Org. Chem., 1975, 40, 2481.CrossRefGoogle Scholar
  51. 51.
    R. M. Srivastava, M. F. Rosa, C. Eduardo, M. Carvalho, S. da G. M. Portugal, I. M. Brinn, M. Da Conceicao Pereira, and O. A. C. Antunes, Heterocycles, 2000, 53, 191.Google Scholar
  52. 52.
    F. M. Pallos, J. R. DeBaun, and A. D. Gutman, Pat. US 75-632603; Chem. Abstrs, 1976, 85, 104204.Google Scholar
  53. 53.
    J. A. Claisse, G. I. Gregory, and W. K. Warburton, Pat. GB 1228142 (A); Chem. Abstrs, 1970, 72, 21696.Google Scholar
  54. 54.
    C. P. Singh and H. Hasan, J. Indian Council of Chemists, 2002, 19, 46.Google Scholar
  55. 55.
    M. R. G. Manrao, K. Karamjit, J. R. Sharma, and P. S. Kalsi, Indian J. Heterocycl. Chem., 1995, 5, 151.Google Scholar
  56. 56.
    A. Chimirri, S. Grasso, A.-M. Montforte, A. Rao, and M. Zappala, Farmaco, 1996, 51, 125.Google Scholar
  57. 57.
    J. Sterne, S. Le Guilcher, and M. Rousselet, Therapie, 1972, 27, 517.Google Scholar
  58. 58.
    F. Lauria, V. Vecchietti, and G. Tosolini, Gazz. Chim. Ital., 1964, 94, 478.Google Scholar
  59. 59.
    J. Sterne and C. Hirsch, Therapie, 1965, 20, 89.Google Scholar
  60. 60.
    J. M. D. Aron-Samuel, 1965, Pat. FR 19640424; Chem. Abstrs, 1965, 63, 63149.Google Scholar
  61. 61.
    L. Eberson, J. J. McCullough, Ch. M. Hartshorn, and M. P. Hartshorn, J. Chem. Soc., Perkin Trans. 2, 1998, 41.Google Scholar
  62. 62.
    Y. Yu, N. Watanabe, M. Ohno, and S. Eguchi, J. Chem. Soc., Perkin Trans. 1, 1995, 1417.Google Scholar
  63. 63.
    Y. Yu, M. Ohno, and S. Eguchi, J. Chem. Soc., Chem. Commun., 1994, 331.Google Scholar
  64. 64.
    Y. Yu, H. Fujita, M. Ohno, and S. Eguchi, Synthesis, 1995, 498.Google Scholar
  65. 65.
    R. Plate, P. H. H. Hermkens, J. M. M. Smits, R. J. F. Nivard, and H. C. J. Ottenheijm, J. Org. Chem., 1987, 52, 1047.CrossRefGoogle Scholar
  66. 66.
    R. Sustmann, Tetrahedron Lett., 1971, 2717.Google Scholar
  67. 67.
    R. Sustmann, Tetrahedron Lett., 1971, 2721.Google Scholar
  68. 68.
    M. L. Kuznetsov and V. Yu. Kukushkin, J. Org. Chem., 2006, 71, 582.CrossRefGoogle Scholar
  69. 69.
    M. L. Kuznetsov, V. Yu. Kukushkin, A. I. Dement’ev, and A. J. L. Pombeiro, J. Phys. Chem. A, 2003, 107, 6108.CrossRefGoogle Scholar
  70. 70.
    P. H. H. Hermkens, J. H. v. Maarseveen, C. G. Kruse, and H. W. Scheeren, Tetrahedron, 1988, 44, 6491.CrossRefGoogle Scholar
  71. 71.
    V. D. Kiselev, G. G. Iskhakova, E. A. Kashaeva, M. S. Shikhab, M. D. Medvedeva, and A. I. Konovalov, Zh. Obshch. Khim., 2003, 73, 1884 [Russ. J. Gen. Chem., 2003, 73 (Engl. Transl.)].Google Scholar
  72. 72.
    A. Díaz-Ortiz, E. Díez-Barra, A. de la Hoz, A. Moreno, M. J. Gómez-Escalonilla, and A. Loupy, Heterocycles, 1996, 43, 1021.Google Scholar
  73. 73.
    G. Broggini, G. Molteni, A. Terraneo, and G. Zecchi, Heterocycles, 2003, 59, 823 and references cited therein.CrossRefGoogle Scholar
  74. 74.
    M. A. J. Charmier, V. Yu. Kukushkin, and A. J. L. Pombeiro, J. Chem. Soc., Dalton Trans., 2003, 2540.Google Scholar
  75. 75.
    N. A. Bokach, A. A. Krokhin, A. A. Nazarov, V. Yu. Kukushkin, M. Haukka, J. J. R. Fraústo da Silva, and A. J. L. Pombeiro, Eur. J. Inorg. Chem, 2005, 3042.Google Scholar
  76. 76.
    B. Desai, T. N. Danks, and G. Wagner, J. Chem. Soc., Dalton Trans., 2003, 2544.Google Scholar
  77. 77.
    B. Desai, T. N. Danks, and G. Wagner, Dalton Trans, 2004, 166.Google Scholar
  78. 78.
    G. Wagner, A. J. L. Pombeiro, and V. Yu. Kukushkin, J. Am. Chem. Soc., 2000, 122, 3106.CrossRefGoogle Scholar
  79. 79.
    G. Wagner, M. Haukka, J. J. R. Fraústo da Silva, A. J. L. Pombeiro, and V. Yu. Kukushkin, Inorg. Chem., 2001, 40, 264.CrossRefGoogle Scholar
  80. 80.
    G. Wagner, Inorg. Chim. Acta, 2004, 357, 1320.CrossRefGoogle Scholar
  81. 81.
    G. Wagner, Chem. Eur. J., 2003, 9, 1503.CrossRefGoogle Scholar
  82. 82.
    G. Wagner and M. Haukka, J. Chem. Soc., Dalton Trans., 2001, 2690.Google Scholar
  83. 83.
    M. A. J. Charmier, M. Haukka, and A. J. L. Pombeiro, Dalton Trans, 2004, 2741.Google Scholar
  84. 84.
    V. Yu. Kukushkin, A. J. L. Pombeiro, J. J. R. Fraústo da Silva, and G. Wagner, Pat. WO 2001098283; Chem. Abstrs, 2001, 136, 53750.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • N. A. Bokach
    • 1
  • V. Yu. Kukushkin
    • 1
  1. 1.Department of ChemistrySt. Petersburg State UniversityStary PetergofRussian Federation

Personalised recommendations