Advertisement

Russian Chemical Bulletin

, Volume 55, Issue 10, pp 1743–1747 | Cite as

Preparation and characterization of low-amount Yb3+-doped TiO2 photocatalyst

  • H. Q. Jiang
  • P. Wang
  • X. L. Guo
  • H. Z. Xian
Article

Abstract

The nanoparticles of Yb3+-doped (0.125 wt.%) and pure TiO2 were prepared by an acid-catalyzed sol-gel method and characterized by X-ray diffraction, X-ray photoelectron spectroscopy, UV-Vis diffuse reflectance spectroscopy, and surface photovoltage spectroscopy; the specific surface of the samples was measured using the Brunauer-Emmett-Teller (BET) method. The photocatalytic degradation of methylene blue in aqueous solution was used as a probe reaction to estimate the photocatalytic activity of the prepared nanoparticles. The photocatalytic activity of Yb3+/TiO2 composite nanoparticles is much higher than that of pure TiO2. A low amount of Yb3+ in TiO2 can inhibit the anatase-rutile phase transformation of TiO2, prevent grain growth increasing the specific surface area, and favor the high-temperature stabilization of the pores. According to the surface voltage spectroscopy data, Tb3+-doping prevents recombination of photoinduced electrons and holes and improves the light absorption capacity of the particle surface.

Key words

titania Yb3+-doping nanopowders photocatalytic activity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. I. Kokorin, V. M. Arakelyan, and V. M. Arutyunyan, Izv. Akad. Nauk, Ser. Khim., 2003, 88 [Russ. Chem. Bull., Int. Ed., 2003, 52, 93].Google Scholar
  2. 2.
    I. M. Arabatzis, T. Stergiopoulos, D. Andreeva, S. Kitova, S. G. Neophytides, and P. Falaras, J. Catal., 2003, 220, 127.CrossRefGoogle Scholar
  3. 3.
    D. Li, H. Haneda, S. Hishita, N. Ohashi, and N. K. Labhsetwar, J. Fluorine Chem., 2005, 126, 69.CrossRefGoogle Scholar
  4. 4.
    Y. Yang, X. Li, J. Chen, and L. Wang, J. Photochem. Photobiol. A: Chem., 2004, 163, 517.CrossRefGoogle Scholar
  5. 5.
    D. Shchukin, S. Poznyak, A. Kulak, and P. Pichat, J. Photochem. Photobiol. A: Chem., 2004, 162, 423.CrossRefGoogle Scholar
  6. 6.
    P. Yang, C. Lu, N. Hua, and Y. Du, Mater. Lett., 2002, 57, 794.CrossRefGoogle Scholar
  7. 7.
    Y. M. Wang, S. W. Liu, M. K. Lü, S. F. Wang, F. Gu, X. Z. Gai, X. P. Cui, and J. Pan, J. Mol. Catal. A: Chem., 2004, 215, 137.CrossRefGoogle Scholar
  8. 8.
    A. D. Paola, E. Garcia-Lopez, S. Ikeda, G. Marci, B. Ohtani, and L. Palmisano, Catal. Today, 2002, 75, 87.CrossRefGoogle Scholar
  9. 9.
    J. Lin and J. C. Yu, J. Photochem. Photobiol. A: Chem., 1998, 116, 63.CrossRefGoogle Scholar
  10. 10.
    A. W. Xu, Y. Gao, and H. Q. Liu, J. Catal., 2002, 207, 151.CrossRefGoogle Scholar
  11. 11.
    L. Jing, Z. Xu, X. Sun, J. Shang, and W. Cai, Appl. Surf. Sci., 2001, 180, 308.CrossRefGoogle Scholar
  12. 12.
    H. E. Chao, Y. U. Yun, H. U. Xingfang, and A. Larbot, J. Eur. Ceram. Soc., 2003, 23, 1457.CrossRefGoogle Scholar
  13. 13.
    B. Xia, H. Huang, and Y. Xie, Mater. Sci. Eng. B, 1999, 57, 150.CrossRefGoogle Scholar
  14. 14.
    J. Yu, M. Zhou, B. Cheng, H. Yu, and X. Zhao, J. Mol. Catal. A: Chem., 2005, 227, 75.CrossRefGoogle Scholar
  15. 15.
    S. Liao, D. Huang, D. Yu, Y. Su, and G. Yuan, J. Photochem. Photobiol. A: Chem., 2004, 168, 7.CrossRefGoogle Scholar
  16. 16.
    A. Mills and S. L. Hunte, J. Photochem. Photobiol. A: Chem., 1997, 108, 1.CrossRefGoogle Scholar
  17. 17.
    K. L. Yeung, S. T. Yau, A. J. Maira, J. M. Coronado, J. Soria, and P. L. Yue, J. Catal., 2003, 219, 107.CrossRefGoogle Scholar
  18. 18.
    J. C. Yu, J. Yu, W. Ho, and J. Zhao, J. Photochem. Photobiol. A: Chem., 2002, 148, 331.CrossRefGoogle Scholar
  19. 19.
    X. Z. Li, F. B. Li, C. L. Yang, and W. K. Ge, J. Photochem. Photobiol. A: Chem., 2001, 141, 209.CrossRefGoogle Scholar
  20. 20.
    L. Jing, Z. Xu, J. Shang, X. Sun, W. Cai, and H. Guo, Mater. Sci. Eng. A, 2002, 332, 356.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • H. Q. Jiang
    • 1
    • 2
  • P. Wang
    • 1
  • X. L. Guo
    • 1
  • H. Z. Xian
    • 1
  1. 1.Research Center for Green Chemical Technology, School of Municipal and Environmental EngineeringHarbin Institute of TechnologyHarbinChina
  2. 2.Department of ChemistryHarbin Normal UniversityHarbinChina

Personalised recommendations