Russian Chemical Bulletin

, Volume 55, Issue 9, pp 1516–1522 | Cite as

Geometric parameters as a criterion for assessment of the bioactive conformations of opiate receptor ligands

  • N. E. Kuz’mina
  • E. S. Osipova
  • V. S. Kuz’min
  • V. B. Sitnikov


The mutual positions of the phenyl fragment and the protonated amino group in the molecules of opiate receptor ligands of various structural classes were studied. It was concluded that two bioactive ligand conformations exist and their implementation does not depend on the structural class of the ligand, selectivity of its action on receptors, or relationship between the agonistic and antagonistic properties. A set of geometric parameters describing the three-dimensional arrangement of the phenyl fragment and the protonated amino group in bioactive conformations was proposed; this can be used as a criterion for the geometric assessment of the opiate activity.

Key words

opiate receptor ligands opiate activity geometric parameters bioactive conformation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. V. Pogrebnyak, Moleculeyarnoe modelirovanie i dizain biologicheski aktivnykh veshchestv [Molecular Modeling and Design of Biologically Active Compounds], SKNTs VSh, Moscow, 2003, 28.Google Scholar
  2. 2.
    I. A. Wilson and R. L. Stanfield, Curr. Opin. Struct. Biol., 1993, 3, 113.CrossRefGoogle Scholar
  3. 3.
    A. H. Beckett and A. F. Casy, J. Pharm. Pharmacol., 1954, 6, 986.Google Scholar
  4. 4.
    D. R. H. Gourley, Prog. Drug Res., 1963, 7, 36.Google Scholar
  5. 5.
    I. D. Pogozheva, A. L. Lomize, and H. I. Mosberg, Biophys. J., 1998, 75, 612.CrossRefGoogle Scholar
  6. 6.
    S. S. Krylov, Khim.-Farm. Zhurn., 1992, 26, 122 [Pharm. Chem. J., 1992, 26 (Engl. Transl.)].Google Scholar
  7. 7.
    G. H. Loew, Modern Drug Discovery, 1999, 2, 24.Google Scholar
  8. 8.
    J. V. Aldrich, Burger’s Medicinal Chemistry and Drug Discovery, Ed. M. E. Wolf, J. Wiley and Sons, New York, 1996, 3, p. 321.Google Scholar
  9. 9.
    K. Befort, L. Tabbara, S. Bausch, C. Chavkin, C. Evans, and B. L. Befort, Mol. Pharm., 1996, 49, 216.Google Scholar
  10. 10.
    A. Mansour, L. P. Taylor, J. L. Fine, R. C. Thompson, M. T. Hoversten, H. I. Mosberg, S. J. Watson, and H. Akil, J. Neurochem., 1997, 68, 344.CrossRefGoogle Scholar
  11. 11.
    J. G. Li, C. Chen, and J. Yin, Life Sci., 1999, 65, 175.CrossRefGoogle Scholar
  12. 12.
    V. M. Kolb and S. Scheiner, J. Pharm. Sci., 1984, 73, 719.CrossRefGoogle Scholar
  13. 13.
    K. Befort, D. Tabbara, D. Kling, B. Maigret and B. L. Kieffer, J. Biol. Chem., 1996, 271, 10161.Google Scholar
  14. 14.
    V. P. Sergeev and R. L. Shimanovskii, Retseptory [Receptors], Meditsina, Moscow, 1987, p. 272, p. 275.Google Scholar
  15. 15.
    G. R. Lenz, S. M. Evans, and D. E. Walters, Opiates, Acad. Press Inc., New York, 1986, p. 560.Google Scholar
  16. 16.
    P. S. Portoghese, J. Med. Chem., 1992, 35, 1927.CrossRefGoogle Scholar
  17. 17.
    J. B. Thomas, S. W. Mascarella, R. B. Rothman, J. S. Partilla, H. Xu, K. B. McCullough, C. M. Dersch, B. E. Cantrell, D. M. Zimmerman, and F. I. Carroll, J. Med. Chem., 1998, 41, 1980.CrossRefGoogle Scholar
  18. 18.
    P. R. Stout and L. J. Farrell, Forensic Sci. Rev., 2002, 15, 30.Google Scholar
  19. 19.
    A. K. Gilbert, S. Hosztafi, and L. Mahurter, Eur. J. Pharmacol., 2004, 492, 123.CrossRefGoogle Scholar
  20. 20.
    C. H. Mitch, J. D. Leander, L. G. Mendelsohn, W. N. Shaw, D. V. Wong, B. E. Cantrell, B. G. Johnson, J. K. Rell, J. D. Snobby, A. E. Takemori, and D. M. Zimmerman, J. Med. Chem., 1993, 36, 2842.CrossRefGoogle Scholar
  21. 21.
    G. H Loew and D. S. Berkowitz, J. Med. Chem., 1978, 21, 101.CrossRefGoogle Scholar
  22. 22.
    J. L. Neumeyer, J. M. Bidlack, R. Zong, V. Bakthavachalam, P. Gao, D. J. Cohen, S. S. Negus, and N. K. Mello, J. Med. Chem., 2000, 43, 114.CrossRefGoogle Scholar
  23. 23.
    J. D. Leander, J. Pharmacol. Exp. Ther., 1983, 35, 227.Google Scholar
  24. 24.
    E. L. May, A. E. Jacobson, M. V. Mattson, J. R. Traynor, J. H. Woods, E. R. Bowman, M. D. Aceto, and L. S. Harris, J. Med. Chem., 2000, 43, 5030.CrossRefGoogle Scholar
  25. 25.
    A. F. Cazy, Opioid Analgetics, Plenum Press, New York, 1986, p. 518.Google Scholar
  26. 26.
    H. Awaya, E. L. May, and M. D. Aceto, J. Med. Chem., 1984, 27, 536.CrossRefGoogle Scholar
  27. 27.
    A. Hashimoto, A. E. Jacobson, and R. B. Rothman, J. Bioorg. Chem., 2002, 10, 1319.Google Scholar
  28. 28.
    J. B. Tomas, R. N. Atkinson, N. Mamdev, R. B. Rothman, K. M. Gigstad, S. E. Fix, S. W. Mascarella, J. B. Burgess, N. A. Vinson, H. Xu, C. M. Dersch, B. E. Cantrell, D. M. Zimmerman, and F. I. Carrol, J. Med. Chem., 2002, 45, 3524.CrossRefGoogle Scholar
  29. 29.
    B. Belleau, T. Conway, F. R. Ahmed, and A. D. Hardy, J. Med. Chem., 1974, 17, 907.CrossRefGoogle Scholar
  30. 30.
    R. J. Kobylecki, A. C. Lane, F. C. Smith, and O. Kennard, J. Med. Chem., 1982, 25, 1280.CrossRefGoogle Scholar
  31. 31.
    Cambridge Structural Database System, Version 5.17, 1999.Google Scholar
  32. 32.
    Pharmacophore. Perception Development and Use in Drug Design, Ed. O. F. Gunner, International University Line, California, 2002, p. 113.Google Scholar
  33. 33.
    Accelrys Software Inc., Material Studio, Release 3.2, San Diego, 2003.Google Scholar
  34. 34.
    U. Burkert and N. L. Allinger, Molecular Mechanics, ACS Monograph, 1982, p. 177.Google Scholar
  35. 35.
    J. P. Stewart, J. Computer-Aided Molecular Design, 1990, 4, 1.CrossRefGoogle Scholar
  36. 36.
    K. B. Lipkowitz and D. B. Boyd, Reviews in Computational Chemistry, VCH Publishers, New York, 1990.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • N. E. Kuz’mina
    • 1
  • E. S. Osipova
    • 1
  • V. S. Kuz’min
    • 1
  • V. B. Sitnikov
    • 1
  1. 1.State Research Institute of Organic Chemistry and TechnologyMoscowRussian Federation

Personalised recommendations