Advertisement

Russian Chemical Bulletin

, Volume 55, Issue 8, pp 1368–1371 | Cite as

Ferrocenylalkylation processes under electrospray ionization conditions

  • Yu. S. Nekrasov
  • R. S. Skazov
  • A. A. Simenel
  • L. V. Snegur
  • I. V. Kachala
Article

Abstract

The electrospray ionization behavior of some ferrocenylalkylazoles CpFeC5H4CH(R)Az (AzH are derivatives of imidazole, pyrazole, triazole and their benzo analogs; R = H, Me, Et, Ph), ferrocenylalkanols CpFeC5H4CH(R)OH (R = H, Me), and mixtures of the latter with azoles was studied. The electrospray ionization mass spectra of these compounds, in addition to the molecular ion [M], the protonated molecule [M + H]+, and ferrocenylalkyl cation [FcCHR]+ peaks, exhibit also intensive peaks for the binuclear ions [(FcCHR)2X]+ (X = Az or O), resulting from ferrocenylalkylation of the initial compounds with the ferrocenylalkyl cations. Electrospray ionization of an equimolar mixture of ferrocenylmethanol FcCH2OH and imidazole gives the protonated ferrocenylmethylimidazole molecule [FcCH2Im + H]+ and the [FcCH2(Im)2 + H]+ dimer, apart from the ions typical of each component, i.e., ferrocenylalkylation of azoles with the ferrocenylalkylcarbinols, known in the chemistry of solutions, takes place under electrospray conditions.

Key words

ferrocene azoles mass spectrometry reactivity electrospray ionization ferrocenylalkylation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. B. Cole, J. Mass Spectrom., 2000, 35, 763.CrossRefGoogle Scholar
  2. 2.
    R. A. Ochran and L. Konermann, J. Am. Soc. Mass Spectrom., 2004, 15, 1748.CrossRefGoogle Scholar
  3. 3.
    J. F. de la Mora, G. J. Van Berkel, C. G. Enke, R. B. Cole, M. Martinez-Sanchez, and J. B. Fenn, J. Mass Spectrom., 2000, 35, 939.CrossRefGoogle Scholar
  4. 4.
    A. T. Blades, M. G. Ikonomou, and P. Kebarle, Anal. Chem., 1991, 63, 2109.CrossRefGoogle Scholar
  5. 5.
    G. J. Van Berkel, F. Zhou, and Aronson, Int. J. Mass Spectrom. Ion Processes, 1997, 162, 55.CrossRefGoogle Scholar
  6. 6.
    T. D. McCarley, M. W. Lufaso, L. S. Curtin, and R. L. McCarley, J. Phys. Chem. B, 1998, 102, 10078.Google Scholar
  7. 7.
    W. Henderson and G. Olsen, Polyhedron, 1998, 17, 577.CrossRefGoogle Scholar
  8. 8.
    W. Henderson and S. R. Alley, J. Organomet. Chem., 2002, 656, 120.CrossRefGoogle Scholar
  9. 9.
    J. J. Bariyanga, J. Mol. Struct., 2003, 657, 225.CrossRefGoogle Scholar
  10. 10.
    J. J. Bariyanga, J. Mol. Struct., 2001, 570, 109.CrossRefGoogle Scholar
  11. 11.
    D. Williams, S. Chen, and M. K. Young, Rapid Commun. Mass Spectrom., 2001, 15, 182.CrossRefGoogle Scholar
  12. 12.
    M. K. Young, N. Dinh, and D. Williams, Rapid Commun. Mass Spectrom., 2000, 14, 1462.CrossRefGoogle Scholar
  13. 13.
    J. M. E. Quirke, Y. L. Hsu, and G. J. Van Berkel, J. Nat. Prod., 2000, 63, 230.CrossRefGoogle Scholar
  14. 14.
    L. V. Popova, V. N. Babin, Yu. A. Belousov, Yu. S. Nekrasov, A. E. Snegireva, N. P. Borodina, G. M. Shaposhnikova, O. V. Buchenko, P. M. Raevskii, N. B. Morozova, A. I. Ilyina, and K. G. Shitkov, Appl. Organomet. Chem., 1993, 7, 85.CrossRefGoogle Scholar
  15. 15.
    L. V. Snegur, Yu. S. Nekrasov, V. V. Gumenyuk, Zh. V. Zhilina, N. B. Morozova, I. K. Sviridova, I. A. Rodina, N. S. Sergeeva, and K. G. Shchitkov, and B. N. Babin, Ros. Khim. Zh., 1998, 42, 178 [Mendeleev Chem. J., 1998, 42 (Engl. Transl.))].Google Scholar
  16. 16.
    L. V. Snegur, V. I. Boev, V. N. Babin, M. Kh. Dzhafarov, A. S. Batsanov, Yu. S. Nekrasov, and Yu. T. Struchkov, Izv. Akad. Nauk. Ser. Khim., 1995, 554 [Russ. Chem. Bull., 1995, 44, 537 (Engl. Transl.)].Google Scholar
  17. 17.
    V. A. Mironov, M. D. Reshetova, and N. I. Vorona, Zh. Obshch. Khim., 1979, 49, 2521 [J. Gen. Chem. USSR, 1979, 49 (Engl. Transl.)].Google Scholar
  18. 18.
    A. A. Simenel, Y. V. Kuzmenko, E. A. Morozova, M. M. Ilyin, I. F. Gun’ko, and L. V. Snegur, J. Organomet. Chem., 2003, 688, 138.CrossRefGoogle Scholar
  19. 19.
    L. V. Snegur, Sci.D. Thesis, A. N. Nesmeyanov Institute of Organoelement Compounds, Moscow, 2002, 192 pp. (in Russian).Google Scholar
  20. 20.
    B. Misterkiewicz, J. Organomet. Chem., 1982, 224, 43.CrossRefGoogle Scholar
  21. 21.
    L. V. Snegur, A. A. Simenel, Yu. S. Nekrasov, E. A. Morozova, Z. A. Starikova, S. M. Peregudova, Yu. V. Kuzmenko, V. N. Babin, L. A. Ostrovskaya, N. V. Bluchterova, and M. M. Fomina, J. Organomet. Chem., 2004, 689, 2473.CrossRefGoogle Scholar
  22. 22.
    Yu. N. Sukharev and Yu. S. Nekrasov, Org. Mass Spectrom., 1976, 11, 1232.CrossRefGoogle Scholar
  23. 23.
    Yu. S. Nekrasov, R. S. Skazov, A. A. Simenel, L. V. Snegur, and V. V. Gumenyuk, Izv. Akad. Nauk. Ser. Khim., 2005, 2384 [Russ. Chem. Bull., Int. Ed., 2005, 54, 2460].Google Scholar
  24. 24.
    R. S. Skazov, Yu. S. Nekrasov, S. A. Kuklin, and A. A. Simenel, Eur. J. Mass Spectrom., 2006, 12, 137.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Yu. S. Nekrasov
    • 1
  • R. S. Skazov
    • 1
  • A. A. Simenel
    • 1
  • L. V. Snegur
    • 1
  • I. V. Kachala
    • 1
  1. 1.A. N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of SciencesMoscowRussian Federation

Personalised recommendations