Russian Chemical Bulletin

, Volume 55, Issue 6, pp 1015–1027 | Cite as

5-(Pyridylmethylidene)-substituted 2-thiohydantoins and their complexes with CuII, NiII, and CoII: Synthesis, electrochemical study, and adsorption on the cystamine-modified gold surface

  • E. K. Beloglazkina
  • A. G. Majouga
  • I. V. Yudin
  • N. A. Frolova
  • N. V. Zyk
  • V. D. Dolzhikova
  • A. A. Moiseeva
  • R. D. Rakhimov
  • K. P. Butin


A series of CuII, NiII, and CoII complexes with 5-(pyridylmethylidene)-substituted 2-thiohydantoins (L) were synthesized by the reactions of the corresponding organic ligands with MCl2·nH2O. The resulting complexes have the composition LMCl2 (M = Cu or Ni) or L2MCl2 (M = Co). The reactions with N(3)-unsubstituted thiohydantoins afford complexes containing four-membered metallacycles, in which the metal ion is coordinated by the S and N(3) atoms of the thiohydantoin ligand. The reactions of N(3)-substituted thiohydantoins give complexes in which the S and N(1) atoms are involved in coordination. Study by IR spectroscopy demonstrated that the pyridine nitrogen atom is not involved in coordination. Based on the results of electrochemical study of the ligands and complexes by cyclic voltammetry and calculation of their frontier orbitals by the PM3(tm) method, the mechanism of oxidation and reduction of these compounds was proposed. In the first reduction and oxidation steps, the metal atom in the copper and nickel complexes remains, apparently, intact, and these processes occur with the involvement of the ligand fragments, viz., the coordinated thiohydantoin ligand and chloride anion, respectively. In the cobalt complexes, the first reduction step occurs at the ligand; the first oxidation state, at the metal atom. Measurements of the contact angle of aqueous wetting and electrochemical study demonstrated that carboxy-containing 2-thiohydantoins and their complexes can be adsorbed on the cystamine-modified gold surface. The structures of the complexes on the surface differ from the structures of these complexes in solution.

Key words

5-(pyridylmethylidene)-2-thiohydantoins CuII, NiII, and CoII complexes cyclic voltammetry quantum chemical calculations by the PM3(tm) method adsorption 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. Chazeau, M. Cossac, and A. Boucherle, Eur. J. Med. Chem., 1992, 27, 615.CrossRefGoogle Scholar
  2. 2.
    K. Kiec-Kononowich and J. Karolak-Wojciechowska, Phosphorus, Sulfur, Silicon, 1992, 73, 235.Google Scholar
  3. 3.
    A. El-Barbary, Y. Aly, A. Hashem, and A. El-Shehawy, Phosphorus, Sulfur, Silicon, 2000, 160, 77.Google Scholar
  4. 4.
    D. Kushev, G. Gorneva, V. Enchev, E. Naydenova, J. Popova, S. Taxirov, L. Maneva, K. Grancharov, and N. Spassovska, J. Inorg. Biochem., 2002, 89, 203.CrossRefGoogle Scholar
  5. 5.
    J. A. Grim and H. G. Petring, Cancer Res., 1967, 27, 1278.Google Scholar
  6. 6.
    J. S. Casas, E. E. Castellano, A. Macfas, N. Playa, A. Sanchez, J. Sordo, J. M. Varela, and E. Vasques-Lopez, Polyhedron, 2001, 20, 1845.CrossRefGoogle Scholar
  7. 7.
    M. Arca, F. Demartin, F. Davillanova, A. Garau, F. Isaia, V. Lippolis, and G. Verani, Inorg. Chem., 1998, 37, 4164.CrossRefGoogle Scholar
  8. 8.
    A. M. A. Hassaan, Sulfur Lett., 1991, 13, 1.Google Scholar
  9. 9.
    R. S. Srivastava, R. R. Srivastava, and H. N. Bhargava, Bull. Soc. Chim. Fr., 1991, 128, 671.Google Scholar
  10. 10.
    M. M. Chowdhry, D. M. Mingos, A. J. White, and D. J. Williams, J. Chem. Soc., Perkin Trans. 1, 2001, 20, 3495.Google Scholar
  11. 11.
    M. Kumar, A. Shaudhary, and T. Sharma, Ind. J. Chem., Sect. A, 1986, 25, 281.Google Scholar
  12. 12.
    J. Casas, E. Castellano, A. Macfas, N. Playa, A. Sanchez, J. Sordo, and J. Zukerman-Schpector, Inorg. Chim. Acta, 1995, 238, 129.CrossRefGoogle Scholar
  13. 13.
    M. M. Chowdhry, A. Burrows, D. M. Mingos, A. J. White, and D. J. Williams, J. Chem. Soc., Chem. Commun., 1995, 1521.Google Scholar
  14. 14.
    J. S. Casas, E. E. Castellano, M. D. Couce, N. Playa, A. Sanchez, J. Sordo, J. M. Varela, and J. Zukerman-Schpector, J. Coord. Chem., 1999, 47, 299.Google Scholar
  15. 15.
    J. Casas, A. Castineiras, N. Playa, A. Sanchez, J. Sordo, J. Varela, and E. Vazquez-Lopez, Polyhedron, 1999, 18, 3653.CrossRefGoogle Scholar
  16. 16.
    A. G. Majouga, E. K. Beloglazkina, S. Z. Vatsadze, A. A. Moiseeva, F. S. Moiseev, K. P. Butin, and N. V. Zyk, Mendeleev Commun., 2005, 48.Google Scholar
  17. 17.
    M. M. Chowdhry, D. M. Mingos, A. J. White, and D. J. Williams, J. Chem. Soc., Chem. Commun., 1996, 899.Google Scholar
  18. 18.
    A. G. Majouga, E. K. Beloglazkina, S. Z. Vatsadze, N. A. Frolova, and N. V. Zyk, Izv. Akad. Nauk, Ser. Khim., 2004, 2734 [Russ. Chem. Bull., Int. Ed., 2004, 53, 2850].Google Scholar
  19. 19.
    S.-F. Tan, K.-P. Ang, and Y.-F. Fong, J. Chem. Soc., Perkin Trans. 2, 1986, 1941.Google Scholar
  20. 20.
    E. K. Beloglazkina, S. Z. Vatsadze, A. G. Majouga, N. A. Frolova, R. B. Romashkina, N. V. Zyk, A. A. Moiseeva, and K. P. Butin, Izv. Akad. Nauk, Ser. Khim., 2005, 2679 [Russ. Chem. Bull., Int. Ed., 2005, 54, 2771].Google Scholar
  21. 21.
    A. G. Majouga, Ph. D. (Chem.) Thesis, M. V. Lomonosov Moscow State University, Moscow, 2005, 131 pp. (in Russian).Google Scholar
  22. 22.
    N. Goswami and D. M. Eichhorn, Inorg. Chem., 1999, 38, 4329.CrossRefGoogle Scholar
  23. 23.
    D. Zhu, Y. Xu, Y. Mei, Y. Sci, C. Tu, and X. You, J. Mol. Struct., 2001, 559, 119.CrossRefGoogle Scholar
  24. 24.
    L. Zhang, L. Liu, D. Jia, and K. Yu, Struct. Chem., 2004, 15, 327.CrossRefGoogle Scholar
  25. 25.
    M. Bakiler, I. V. Masliv, and S. Akyuz, J. Mol. Struct., 1999, 476, 21.CrossRefGoogle Scholar
  26. 26.
    I. Kuzniarska-Biernacka, A. Bartecki, and K. Kurzak, Polyhedron, 2003, 22, 997.CrossRefGoogle Scholar
  27. 27.
    F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, 2 ed., J. Wiley and Sons, New York-London-Sydney, 1966.Google Scholar
  28. 28.
    S. Darwish, H. M. Fahmy, M. A. Abdel Aziz, and A. A. El Maghraby, J. Chem. Soc., Perkin Trans. 2, 1981, 344.Google Scholar
  29. 29.
    H. M. Fahmy, M. A. Abdel Aziz, and A. H. Badran, J. Electroanal. Chem., 1981, 127, 103.CrossRefGoogle Scholar
  30. 30.
    M. A. Aboutabl, H. M. Fahmy, M. A. Abdel Aziz, and H. Abdel Rahman, J. Chem. Techn. Biotechn., 1983, 33A, 286.Google Scholar
  31. 31.
    G. M. Abou-Elenien, N. A. Ismail, and A. A. Magd Eldin, Monatsh. Chem., 1992, 123, 1117.CrossRefGoogle Scholar
  32. 32.
    J. J. P. Stewart, J. Comput. Chem., 1989, 10, 209.CrossRefGoogle Scholar
  33. 33.
    K. V. Gobi, K. Tokuda, and T. Ohsaka, J. Electroanal. Chem., 1998, 444, 145.CrossRefGoogle Scholar
  34. 34.
    W. Yang, E. Chow, G. Willett, D. B. Hibbert, and J. J. Gooding, Analyst, 2003, 128, 712.CrossRefGoogle Scholar
  35. 35.
    H. Y. Hu, A. M. Yu, and H. Y. Chen, J. Electroanal. Chem., 2001, 516, 119.CrossRefGoogle Scholar
  36. 36.
    H. Z. Yu, J. W. Zhao, Y. Q. Wang, S. M. Cai, and Z. F. Liu, J. Electroanal. Chem., 1997, 438, 221.CrossRefGoogle Scholar
  37. 37.
    H. Finklea and D. Hashew, J. Am. Chem. Soc., 1992, 114, 3173.CrossRefGoogle Scholar
  38. 38.
    T. Johnson and B. Nicolet, J. Am. Chem. Soc., 1911, 33, 1973.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • E. K. Beloglazkina
    • 1
  • A. G. Majouga
    • 1
  • I. V. Yudin
    • 1
  • N. A. Frolova
    • 1
  • N. V. Zyk
    • 1
  • V. D. Dolzhikova
    • 1
  • A. A. Moiseeva
    • 1
  • R. D. Rakhimov
    • 1
  • K. P. Butin
    • 1
  1. 1.Department of ChemistryM. V. Lomonosov Moscow State UniversityMoscowRussian Federation

Personalised recommendations