Skip to main content
Log in

N-alkylation of 2,3-dihydroimidazo[2,1-b]quinazolin-1(10)H-5-one. On the cryptoanionic mechanism of N-substitution

  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Quantum chemical methods involving studies of transition states of the reaction showed that the main products of N-alkylation of prototropic 2,3-dihydroimidazo[2,1-b]quinazolin-1(10)H-5-one (1) in the gas phase and under neutral conditions in solution occurring via the SN2 mechanism should be N(10)-alkyl-substituted derivatives formed from the 1H-tautomer. Minor N(1)-substituted derivatives in solution can be produced from both tautomers. For the alkylation of the free N-anion of compound 1, position 1 is attacked first. Validity of conclusions concerning the overall regioselectivity of the reaction was confirmed experimentally. In the absence of solvent, the alkylation proceeds abnormally with a sharp increase in the content of the 1-substituted isomers up to inversion of the regioselectivity of the reaction, which is explained by the participation in the process of the H-bonded dimer of the substrate (1a)2, which undergoes alkylation via the cryptoanionic mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. H. Hardtmann, G. Koletar, and O. R. Pfister, J. Med. Chem., 1975, 18, 447.

    Article  CAS  Google Scholar 

  2. G. H. Hardtmann, US Pat. 3833652; http://www.chemweb.com/databases/patents/.

  3. G. H. Hardtmann, US Pat. 3912731; http://www.chemweb.com/databases/patents/.

  4. G. H. Hardtmann, US Pat. 3919210; http://www.chemweb.com/databases/patents/.

  5. G. H. Hardtmann, US Pat. 3969506; http://www.chemweb.com/databases/patents/.

  6. N. P. Peet and Sh. Sunder, US Pat. 4871732; http://www.chemweb.com/databases/patents/.

  7. G. H. Hardtmann, US Pat. 3598823; http://www.chemweb.com/databases/patents/

  8. T. Jen, B. Dienel, H. Bowman, J. Petta, A. Helt, and B. Loev, J. Med. Chem., 1972, 15, 727.

    Article  CAS  Google Scholar 

  9. E. Takeuchi and T. Sato, Jpn Pat. 61115083; http://v3.espacenet.com.

  10. M. O. Sinnokrot and C. D. Sherrill, J. Am. Chem. Soc., 2004, 126, 7690.

    Article  CAS  Google Scholar 

  11. H.-S. Lee, D.-Y. Cheong, S.-D. Yoh, W.-S. Kim, Y.-W. Kwak, Y.-T. Park, and J.-K. Lee, Bull. Korean Chem. Soc., 2001, 22, 633.

    CAS  Google Scholar 

  12. G. S. Hammond, J. Am. Chem. Soc., 1955, 77, 334.

    Article  CAS  Google Scholar 

  13. T. N. Truong, T.-T. T. Truong, and E. V. Stefanovich, J. Chem. Phys., 1997, 107, 1881.

    Article  CAS  Google Scholar 

  14. J. Gao and X. Xia, J. Am. Chem. Soc., 1993, 115, 9667.

    Article  CAS  Google Scholar 

  15. S. P. Webb and M. S. Gordon, J. Phys. Chem. A, 1999, 103, 1265.

    Article  CAS  Google Scholar 

  16. M. Sola, A. Lledos, M. Duran, J. Bertran, and J. M. Abboud, J. Am. Chem. Soc., 1991, 113, 2873.

    Article  CAS  Google Scholar 

  17. J. March, Advaced Organic Chemistry, Reactions, Mechanisms and Structure, Wiley-Interscience Publication, New York, 1985.

    Google Scholar 

  18. D. K. Bohme and A. B. Raksit, J. Am. Chem. Soc., 1984, 106, 3447.

    Article  CAS  Google Scholar 

  19. E. Humeres, R. J. Nunes, V. G. Machado, M. D. G. Gasques, and C. Machado, J. Org. Chem., 2001, 66, 1163.

    Article  CAS  Google Scholar 

  20. K. C. Westaway, Y. Gao, and Y. Fang, J. Org. Chem., 2003, 68, 3084.

    Article  CAS  Google Scholar 

  21. M. L. Glowka, A. Olczak, and L. Korzycka, J. Chem. Crystallogr., 1994, 24, 725.

    Article  CAS  Google Scholar 

  22. W. J. Le Noble, Synthesis, 1970, 1.

  23. K. Hori, J.-L. M. Abboud, C. Lim, M. Fujio, and Y. Tsuno, J. Org. Chem., 1998, 63, 4228.

    Article  CAS  Google Scholar 

  24. S. D. Yoh, M.-K. Lee, K.-J. Son, D.-Y. Cheong, I. Han, and K.-T. Shim, Bull. Korean Chem. Soc., 1999, 20, 466.

    CAS  Google Scholar 

  25. Y. Takata, Y. Huang, J. Komoto, T. Yamada, K. Konishi, H. Ogawa, T. Gomi, M. Fujioka, and F. Takusagawa, Biochemistry, 2003, 42, 8394.

    Article  CAS  Google Scholar 

  26. J. Komoto, T. Yamada, Y. Takata, K. Konishi, H. Ogawa, T. Gomi, M. Fujioka, and F. Takusagawa, Biochemistry, 2004, 43, 14385.

    Google Scholar 

  27. P. Velichkova and F. Himo, J. Phys. Chem. B, 2005, 109, 8216.

    Article  CAS  Google Scholar 

  28. P. Velichkova and F. Himo, J. Phys. Chem. B, 2005, 109; ASAP Web Release, Date: 07-Dec-2005.

  29. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery, J. Comput. Chem., 1993, 14, 1347.

    Article  CAS  Google Scholar 

  30. M. N. Glukhovstev, A. Pross, M. P. McGrath, and L. Radom, J. Chem. Phys., 1995, 103, 1878.

    Article  Google Scholar 

  31. K. K. Irikura, R. D. Johnson III, and R. N. Kacker, J. Phys. Chem. A, 2005, 109, 8430.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 876–887, May, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morkovnik, A.S., Divaeva, L.N. & Kuz’menko, T.A. N-alkylation of 2,3-dihydroimidazo[2,1-b]quinazolin-1(10)H-5-one. On the cryptoanionic mechanism of N-substitution. Russ Chem Bull 55, 907–919 (2006). https://doi.org/10.1007/s11172-006-0351-7

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-006-0351-7

Key words

Navigation