Russian Chemical Bulletin

, Volume 55, Issue 4, pp 687–696 | Cite as

Doping of fullerite with molecular oxygen at low temperature and pressure

  • Yu. M. Shul’ga
  • V. M. Martynenko
  • A. F. Shestakov
  • S. A. Baskakov
  • S. V. Kulikov
  • V. N. Vasilets
  • T. L. Makarova
  • Yu. G. Morozov


Two methods are described for doping of fullerite C60 with molecular oxygen at a pressure of ∼104 Pa and at temperature 20–30 °C. It was found by mass spectrometry using oxygen 18O as dopant that a portion of molecular oxygen absorbed by the pre-decontaminated fullerite (first method) is removed as CO and CO2 at the heating temperature ≤200 °C. Doping during fullerite precipitation from the liquid phase (second method) makes it possible to prepare samples with the oxygen content ≥1.2 at.%. The fullerite doped with oxygen to this level is diamagnetic. The paramagnetic properties of an O2 molecule disappear when O2 is incorporated into the fullerene lattice. This is interpreted on the basis of quantum chemical calculations as a sequence of equilibrium formation of the adduct C60O2. Calculations showed that the subsequent chemical transformation of C60O2 resulting in the O-O bond cleavage is energetically favorable, enabling prerequisites for the formation of products of incomplete (CO) and deep (CO2) oxidation of fullerene under mild conditions.

Key words

fullerite C60 intercalated with molecular oxygen mass spectrometry gasification on heating magnetic properties quantum chemical calculations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. A. Assink, J. E. Shirber, D. A. Loy, B. Morosin, and G. Carlson, J. Mater. Res., 1992, 7, 2136.Google Scholar
  2. 2.
    M. J. Rosseinsky, Mater. Chem., 1995, 5, 1497.CrossRefGoogle Scholar
  3. 3.
    G. E. Gadd, S. Moricca, S. J. Kennedy, M. M. Elcombe, P. J. Evans, M. Blackford, D. Cassidy, C. J. Howard, P. Prasad, J. V. Hanna, A. Burchwood, and D. Levy, J. Phys. Chem. Solids, 1997, 58, 1823.CrossRefGoogle Scholar
  4. 4.
    I. Holleman, G. von Helden, E. H. T. Olhof, P. J. M. van Bentum, R. Engeln, G. H. Nachtegaal, A. P. M. Kentgens, B. H. Meier, A. van der Avoird, and G. Meijer, Phys. Rev. Lett., 1997, 79, 1138.CrossRefGoogle Scholar
  5. 5.
    G. E. Gadd, M. James, S. Moricca, D. Cassidy, P. J. Evans, B. Collins, and R. S. Armstrong, J. Phys. Chem. Solids, 1998, 59, 1383.CrossRefGoogle Scholar
  6. 6.
    M. James and G. E. Gadd, Physica B, 2000, 276–278, 242.CrossRefGoogle Scholar
  7. 7.
    L. Forro and L. Mihali, Rep. Prog. Phys., 2001, 64, 649.CrossRefGoogle Scholar
  8. 8.
    J. E. Schirber, G. H. Kwei, J. D. Jorgensen, R. L. Hitterman, and B. Morosin, Phys. Rev. B, 1995, 15, 12014.Google Scholar
  9. 9.
    R. A. Assink, J. E. Shirber, D. A. Loy, B. Morosin, and G. Carlson, in Novel Forms of Carbon, Eds C. L. Renschler, J. J. Pouch, and D. M. Cox, MRS Symposia Proceedings No 270, Pittsburgh, 1992, p. 225.Google Scholar
  10. 10.
    Z. Belahmer, P. Bernier, L. Firlej, J. M. Lambert, and M. Riber, Phys. Rev. B, 1993, 47, 15980.Google Scholar
  11. 11.
    Yu. M. Shul’ga, V. M. Martynenko, S. A. Baskakov, and V. N. Fokin, Zh. Fiz. Khim., 2004, 78, 1725 [Russ. J. Phys. Chem., 2004, 78 (Engl. Transl.)].Google Scholar
  12. 12.
    D. V. Schur, A. G. Dubovoi, N. S. Anikina, S. Yu. Zaginaichenko, V. D. Dobrovol’skij, V. K. Pishuk, B. P. Tarasov, Yu. M. Shul’ga, K. A. Meleshevich, A. P. Pomytkin, and A. D. Zolotarenko, Proc. VII Intern. Conf. “Hydrogen Material Science and Chemistry of Metal Hydrides” (Alushta (Crimea, Ukraine), September 16–22, 2001), Alushta, 2001, 478.Google Scholar
  13. 13.
    Yu. M. Shul’ga, V. M. Martynenko, S. A. Baskakov, E. V. Skokan, I. V. Arkhangelskii, D. V. Schur, and A. P. Pomytkin, Proc. VIII Intern. Conf. “Hydrogen Material Science and Chemistry of Metal Hydrides” (Sudak (Crimea, Ukraine), September 14–20, 2003), Sudak, 2003, 582.Google Scholar
  14. 14.
    W. Schöniger, Mikrochim. Acta, 1955, 123.Google Scholar
  15. 15.
    D. S. Bethune, G. Meijer, W. C. Tang, H. J. Rosen, W. G. Golden, H. Seki, C. A. Brown, and M. S. deVries, Chem. Phys. Lett., 1991, 179, 181.CrossRefGoogle Scholar
  16. 16.
    E. V. Skokan, V. I. Privalov, I. V. Arkhangelskii, V. Ya. Davydov, and N. B. Tamm, J. Phys. Chem., 1999, 103, 2050.Google Scholar
  17. 17.
    R. S. Ruoff, D. Beach, J. Cuomo, T. McGuire, R. L. Whetten, and F. Diederich, J. Chem. Phys., 1991, 95, 3457.CrossRefGoogle Scholar
  18. 18.
    A. P. Ramirez, R. C. Haddon, O. Zhou, R. M. Fleming, J. Zhang, S. M. McClure, and R. E. Smalley, Science, 1994, 265, 84.Google Scholar
  19. 19.
    Khimicheskaya entsiklopediya [Chemical Encyclopaedia], Sovetskaya Entsiklopediya, Moscow, 1990, 2, p. 387 (in Russian).Google Scholar
  20. 20.
    S. van Smaalen, R. Dinnebier, I. Holleman, G. von Helden, and G. Meijer, Phys. Rev. B, 1998, 57, 6321.CrossRefGoogle Scholar
  21. 21.
    C. Ueda, K. Sugiyama, and M. Date, J. Phys. Soc. Jpn, 1985, 54, 1107.CrossRefGoogle Scholar
  22. 22.
    M. D. Pace, T. C. Christidis, J. J. Yin, and J. Mailliken, J. Phys. Chem., 1992, 96, 6855.CrossRefGoogle Scholar
  23. 23.
    S. K. Hoffman, W. Hilczer, W. Kempinski, and J. Stankowski, Solid State Commun., 1995, 93, 197.CrossRefGoogle Scholar
  24. 24.
    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865.CrossRefGoogle Scholar
  25. 25.
    H. Basch and P. G. Jasien, Can. J. Chem., 1992, 70, 612.CrossRefGoogle Scholar
  26. 26.
    D. N. Laikov, Chem. Phys. Lett., 1997, 281, 151.CrossRefGoogle Scholar
  27. 27.
    K. Hedberg, L. Hedberg, D. S. Bethune, C. A. Brown, H. C. Dorn, R. D. Johnson, and M. Devries, Science, 1991, 254, 410.Google Scholar
  28. 28.
    P. Neogrady, M. Medved, I. Cernusak, and M. Urban, Mol. Phys., 2002, 100, 541.CrossRefGoogle Scholar
  29. 29.
    D. Heymann, S. M. Bachilo, R. B. Weisman, F. Cataldo, R. H. Fokkens, N. M. M. Nibbering, R. D. Vis, and L. P. Chibante, J. Am. Chem. Soc., 2000, 122, 11473.Google Scholar
  30. 30.
    X. D. Li, W. D. Cheng, D. S. Wu, H. Zhang, Y. J. Gong, and Y. Z. Lan, Chem. Phys. Lett., 2003, 380, 480.CrossRefGoogle Scholar
  31. 31.
    M. G. Giuffreda, F. Negri, and G. Orlandi, J. Phys. Chem. A, 2001, 105, 9123.CrossRefGoogle Scholar
  32. 32.
    H. Jiao, Z. Chen, A. Hirsch, and W. Thiel, Phys. Chem., Chem. Phys., 2002, 4, 4916.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Yu. M. Shul’ga
    • 1
  • V. M. Martynenko
    • 1
  • A. F. Shestakov
    • 1
  • S. A. Baskakov
    • 1
  • S. V. Kulikov
    • 1
  • V. N. Vasilets
    • 1
  • T. L. Makarova
    • 1
  • Yu. G. Morozov
    • 1
  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow RegionRussian Federation

Personalised recommendations