Advertisement

Russian Chemical Bulletin

, Volume 55, Issue 3, pp 492–501 | Cite as

Tautomerism of 1,2,4-triazino[2,3-a]benzimidazol-5(4)H-3-ones

  • A. S. Morkovnik
  • K. A. Lyssenko
  • T. A. Kuz’menko
  • L. N. Divaeva
Article

Abstract

Studies by X-ray diffraction and quantum chemical methods demonstrated that 1,2,4-triazino[2,3-a]benzimidazol-5(4)H-3-ones exist in the condensed state primarily in the 5H-tautomeric form, whereas these compounds exist, most likely, predominantly as 4H tautomers in the gas phase. The low-barrier tautomerism of 1,2,4-triazino[2,3-a]benzimidazol-5(4)H-3-ones occurs through the intermediate formation of hydrogen-bonded cyclic dimers followed by the concerted two-proton transfer. N-Alkylation of both the electroneutral and N-anionic forms of 2-methyl-1,2,4-triazino[2,3-a]benzimidazol-5(4)H-3-one affords predominantly N(4)-alkyl derivatives.

Key words

1,2,4-triazino[2,3-a]benzimidazol-5(4)H-3-ones X-ray diffraction study quantum chemical calculations dipole moments tautomerism N-alkylation hydrogen-bonded dimers polymorphism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. J. Ho and A. R. Day, J. Org. Chem., 1973, 38, 3084.CrossRefGoogle Scholar
  2. 2.
    E. Gomez, C. Avendano, and A. McKillop, Tetrahedron, 1986, 42, 2625.CrossRefGoogle Scholar
  3. 3.
    V. P. Kruglenko, V. P. Gnidets, N. A. Klyuev, E. V. Logachev, M. A. Klykov, and M. V. Povstyanoi, Khim. Geterotsikl. Soedin., 1985, 1402 [Chem. Heterocycl. Compd., 1985, 21, 1155 (Engl. Transl.)].Google Scholar
  4. 4.
    V. P. Kruglenko, V. P. Gnidets, N. A. Klyuev, and M. V. Povstyanoi, Khim. Geterotsikl. Soedin., 1987, 533 [Chem. Heterocycl. Compd., 1987, 23, 444 (Engl. Transl.)].Google Scholar
  5. 5.
    G. Primofiore, F. Da Settimo, S. Taliani, A. M. Marini, C. La Motta, E. Novellino, G. Greco, M. Gesi, L. Trincavelli, and C. Martini, J. Med. Chem., 2000, 43, 96.CrossRefGoogle Scholar
  6. 6.
    F. Da Settimo, G. Primofiore, S. Taliani, AM. Marini, C. La Motta, E. Novellino, G. Greco, A. Lavecchia, L. Trincavelli, and C. Martini, J. Med. Chem., 2001, 44, 316.CrossRefGoogle Scholar
  7. 7.
    F. Da Settimo, G. Primofiore, A. Da Settimo, C. La Motta, S. Taliani, F. Simorini, E. Novellino, G. Greco, A. Lavecchia, and E. Boldrini, J. Med. Chem., 2001, 44, 4359.WCrossRefGoogle Scholar
  8. 8.
    G. Primofiore, F. Da Settimo, S. Taliani, A. M. Marini, F. Simorini, E. Novellino, G. Greco, L. Trincavelli, and C. Martini, Arch. Pharm., 2003, 336, 413.CrossRefGoogle Scholar
  9. 9.
    N. A. Klyuev, M. V. Povstyanoi, V. M. Orlov, V. P. Gnidets, and V. P. Kruglenko, Khim. Geterotsikl. Soedin., 1992, 937 [Chem. Heterocycl. Compd., 1992, 28, 779 (Engl. Transl.)].Google Scholar
  10. 10.
    T. A. Kuz’menko, V. V. Kuz’menko, A. F. Pozharskii, and A. M. Simonov, Khim. Geterotsikl. Soedin., 1988, 1070 [Chem. Heterocycl. Compd., 1988, 24, 880 (Engl. Transl.)].Google Scholar
  11. 11.
    T. A. Kuz’menko, V. V. Kuz’menko, A. S. Morkovnik, and L. N. Divaeva, Khim. Geterotsikl. Soedin., 2006, 738 [Chem. Heterocycl. Compd., 2006 (Engl. Transl.)].Google Scholar
  12. 12.
    J. Bernstein, Polymorphism in Molecular Crystals, Clarendon Press, Oxford, 2002.Google Scholar
  13. 13.
    R. F. W. Bader, Atoms in Molecules. A Quantum Theory, Clarendron Press, Oxford, 1990.Google Scholar
  14. 14.(a)
    E. Espinosa, E. Mollins, and C. Lecomte, Chem. Phys. Lett., 1998, 285, 170; (b) K. A. Lyssenko, D. V. Lyubetsky, and M. Yu. Antipin, Mendeleev Commun., 2003, 60; (c) V. A. Kozlov, I. L. Odinets, K. A. Lyssenko, S. G. Churusova, S. V. Yarovenko, P. V. Petrovskii, and T. A. Mastryukova, Heteroatom. Chem., 2005, 16, 159.CrossRefGoogle Scholar
  15. 15.
    K. A. Lyssenko, D. V. Lyubetskii, A. B. Sheremetev, and M. Yu. Antipin, Izv. Akad. Nauk, Ser. Khim., 2005, 903 [Russ. Chem. Bull., Int. Ed., 2005, 54, 924].Google Scholar
  16. 16.
    I. Alkorta and J. Elguero, J. Chem. Soc., Perkin Trans. 2, 1998, 2497.Google Scholar
  17. 17.
    G. Rauhut, Phys. Chem. Chem. Phys., 2003, 5, 799.Google Scholar
  18. 18.
    M. W. Wong, R. Leung-Toung, and C. Wentrup, J. Am. Chem. Soc., 1993, 115, 2465.CrossRefGoogle Scholar
  19. 19.
    R. Rein and J. Ladik, J. Chem. Phys., 1964, 40, 2466.CrossRefGoogle Scholar
  20. 20.
    S. Nagaoka, T. Terao, F. Imashiro, A. Saika, N. Hirota, and S. Hayashi, J. Chem. Phys., 1983, 79, 4694CrossRefGoogle Scholar
  21. 21.
    S. Idziak and N. Pioelewski, Chem. Phys., 1987, 111, 439.CrossRefGoogle Scholar
  22. 22.
    H. Chojnacki, Polish J. Chem., 2002, 76, 295.Google Scholar
  23. 23.
    A. F. Pozharskii, Teoreticheskie osnovy khimii geterotsiklov [Theoretical Fundamentals of Chemistry of Heterocycles], Khimiya, Moscow, 1985, p. 156 (in Russian).Google Scholar
  24. 24.
    M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery, J. Comput. Chem., 1993, 14, 1347.CrossRefGoogle Scholar
  25. 25.(a)
    P. L. A. Popelier and R. G. A. Bone, MORPHY98, A Topological Analysis Program, UMIST, Engl., EU; (b) P. Popelier, Chem. Phys. Lett., 1994, 228, 160.Google Scholar
  26. 26.
    T. A. Kuz’menko, V. V. Kuz’menko, A. F. Pozharskii, and V. A. Anisimova, Khim. Geterotsikl. Soedin., 1990, 1517 [Chem. Heterocycl. Compd., 1990, 26, 1264 (Engl. Transl)].Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • A. S. Morkovnik
    • 1
  • K. A. Lyssenko
    • 2
  • T. A. Kuz’menko
    • 1
  • L. N. Divaeva
    • 1
  1. 1.Institute of Physical and Organic ChemistryRostov State UniversityRostov-on-DonRussian Federation
  2. 2.A. N. Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussian Federation

Personalised recommendations