Russian Chemical Bulletin

, Volume 55, Issue 2, pp 380–383 | Cite as

Hidden rearrangement processes in short-lived negative molecular ions

  • M. V. Muftakhov
  • P. V. Schukin
  • R. V. Khatymov
Brief Communications


The study of resonant electron capture by nitrobenzene molecules showed that some fragmentary negative ions are unstable toward electron autodetachment. The measured appearance energy of the neutral component of an [M — H] ion beam does not agree with the energetics of direct dissociation in a molecular ion. The estimation calculations show that the low appearance energy of [M — H]0 neutral components is caused by isomerization of a molecular ion of nitrobenzene to the 2-nitrobenzene structure followed by the formation of a phenoxide ion in the autodetachment state.

Key words

mass spectrometry resonant electron capture negative ions rearrangements nitrobenzene 2-nitrosophenol structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. S. Massey, Negative Ions, Cambridge University Press, Cambridge, 1976, 502 pp.Google Scholar
  2. 2.
    J. H. Bowie, Mass Specrtom. Rev., 1984, 3, 161.CrossRefGoogle Scholar
  3. 3.
    V. I. Khvostenko, V. A. Mazunov, V. S. Fal’ko, O. G. Khvostenko, and V. Sh. Chanbarisov, Khim. Fiz. [Chemical Physics], 1982, 7, 915 (in Russian).Google Scholar
  4. 4.
    M. V. Muftakhov, Yu. V. Vasil’ev, E. R. Nazirov, and V. A. Mazunov, Pribory i tekhnika eksperimenta [Experimental Instruments and Equipment], 1989, 2, 166 (in Russian).Google Scholar
  5. 5.
    V. I. Khvostenko, Mass-spektrometriya otritsatel’nykh ionov v organicheskoi khimii [Mass Spectrometry of Negative Ions in Organic Chemistry], Nauka, Moscow, 1981, 160 pp. (in Russian).Google Scholar
  6. 6.
    M. Meotner and S. A. Kafafi, J. Am. Chem. Soc., 1988, 110, 6297.CrossRefGoogle Scholar
  7. 7.
    S. G. Lias, J. E. Bartmess, J. F. Liebman, J. L. Holmes, R. D. Levin, and W. G. Mallard, J. Phys. Chem. Ref. Data, 1988, 17, Suppl. 1.Google Scholar
  8. 8.
    C. D. Cooper and R. N. Compton, Chem. Phys. Lett., 1972, 14, 29.CrossRefGoogle Scholar
  9. 9.
    M. V. Muftakhov, Yu. V. Vasil’ev, V. A. Mazunov, V. V. Takhistov, and D. A. Ponomarev, Rap. Commun. Mass Spectrom., 1995, 30, 275.CrossRefGoogle Scholar
  10. 10.
    K. Y. Choo, D. M. Golden, and S. W. Benson, Int. J. Chem. Kinet., 1975, 7, 713.CrossRefGoogle Scholar
  11. 11.
    H. M. Rosenstock, J. Dannacher, and J. F. Liebman, Radiat. Phys. Chem., 1982, 20, 7.CrossRefGoogle Scholar
  12. 12.
    W. J. Hehre and J. A. Pople, J. Am. Chem. Soc., 1970, 92, 2191.CrossRefGoogle Scholar
  13. 13.
    W. J. Hehre, L. Radom, and J. A. Pople, J. Am. Chem. Soc., 1972, 94, 1496.CrossRefGoogle Scholar
  14. 14.
    Y. V. Vasil’ev, R. R. Abzalimov, S. K. Nasibullaev, and T. Drewello, Fullerene, Nanotubes, and Carbon Nanostructures, 2004, 12, 229.CrossRefGoogle Scholar
  15. 15.
    S. W. Benson, Thermochemical Kinetics, Wiley, New York, 1976.Google Scholar
  16. 16.
    V. V. Takhistov, Organicheskaya mass-spektrometriya [Organic Mass Spectrometry], Nauka, Leningrad, 1990, 222 pp. (in Russian).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • M. V. Muftakhov
    • 1
  • P. V. Schukin
    • 1
  • R. V. Khatymov
    • 1
  1. 1.Institute of Molecule and Crystal Physics, Ufa Research CenterRussian Academy of SciencesRussian Federation

Personalised recommendations