Russian Chemical Bulletin

, Volume 54, Issue 10, pp 2330–2337 | Cite as

Spectrophotometric study of zirconocene/polymethylalumoxane catalytic systems: principal component analysis and parametric modeling

  • A. G. Ryabenko
  • E. E. Faingol’d
  • E. N. Ushakov
  • N. M. Bravaya


Transformation of electronic absorption spectra of zirconocene catalytic systems Ph2CCpFluZrCl2-polymethylalumoxane (MAO) and rac-Me2Si(2-Me,4-PhInd)2ZrCl2-MAO (Flu is fluorenyl, Ind is indenyl) in toluene was studied upon a change in the ratio of reactants AlMAO/Zr from 0 to 3000 mol mol−1. Analysis of the spectroscopic data using statistical methods determined the number of reaction products in each system. A reaction model including three equilibria and being common for the both systems was proposed. Effective equilibrium constants and absorption spectra of individual reaction products were determined by parametric self-modeling of the experimental spectra.

Key words

zirconocene polymethylalumoxane transformation of spectra principal component analysis parametric modeling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Y. Chen and T. J. Marks, Chem. Rev., 2000, 100, 1391.CrossRefGoogle Scholar
  2. 2.
    D. Coevoet, H. Cramail, and A. Deffieux, Macromol. Chem. Phys., 1998, 199, 1451.Google Scholar
  3. 3.
    N. I. Makela, H. R. Knuuttila, M. Linnolahti, T. A. Pakkanen, and M. A. Leskella, Macromolecules, 2002, 35, 3395.CrossRefGoogle Scholar
  4. 4.
    U. Wieser, F. Schaper, H.-H. Brintzinger, N. I. Makela, H. R. Knuuttila, and M. A. Leskella, Organometallics, 2002, 21, 541.Google Scholar
  5. 5.
    W.-M. Tsai and J. C. W. Chien, J. Polym. Sci. A: Polym. Chem., 1994, 32, 149.CrossRefGoogle Scholar
  6. 6.
    W. Kaminsky and M. Arndt, Adv. Polym. Sci., 1997, 127, 143.Google Scholar
  7. 7.
    I. Tritto, R. Donetti, M. C. Sacchi, P. Locatelli, and G. Zannoni, Macromolecules, 1997, 30, 1247.CrossRefGoogle Scholar
  8. 8.
    I. Tritto, D. Zucchi, M. Destro, M. C. Sacchi, T. Dall’Occo, and M. Galimberti, J. Mol. Catal. A: Chem., 2000, 160, 107.CrossRefGoogle Scholar
  9. 9.
    D. E. Babushkin, N. V. Semikolenova, V. A. Zakharov, and E. P. Talsi, Macromol. Chem. Phys., 2000, 201, 558.CrossRefGoogle Scholar
  10. 10.
    M. Bochmann and S. Lancaster, Angew. Chem., Int. Ed. Engl., 1994, 33, 1634.CrossRefGoogle Scholar
  11. 11.
    Ziegler Catalysts: Recent Scientific Innovations and Technological Improvements, Eds G. Fink, R. Mulhaupt, and H. H. Brintzinger, Springer-Verlag, Berlin, 1995.Google Scholar
  12. 12.
    D. Coevoet, H. Cramail, A. Deffieux, C. Mladenov, J. N. Pedeutour, and F. Peruch, Polym. Int., 1999, 48, 257.CrossRefGoogle Scholar
  13. 13.
    S. S. Lalayan, E. A. Fushman, V. E. l’vovskii, I. E. Nifant’ev, and A. D. Margolin, J. Polym. Sci. A: Polym. Chem., 2000, 42, 961.Google Scholar
  14. 14.
    O. N. Babkina, O. M. Chukanova, E. E. Faingol’d, and N. M. Bravaya, Izv. Akad. Nauk, Ser. Khim., 2004, 749 [Russ. Chem. Bull., Int. Ed., 2004, 53, 785].Google Scholar
  15. 15.
    E. Giannetti, G. M. Nicoletti, and R. Mazzocchi, J. Polym. Sci. Polym. Chem. Ed., 1985, 23, 2117.CrossRefGoogle Scholar
  16. 16.
    V. Cavillot and B. Champagne, Chem. Phys. Lett., 2002, 354, 449.CrossRefGoogle Scholar
  17. 17.
    N. Makela, H. R. Knuuttila, M. Linnolahti, and T. A. Pakkanen, J. Chem. Soc., Dalton Trans., 2001, 91.Google Scholar
  18. 18.
    E. Samuel and M. D. Rausch, J. Am. Chem. Soc., 1973, 95, 6263.CrossRefGoogle Scholar
  19. 19.
    C. L. Lawson and R. J. Hanson, Solving Least Squares Problems, Prentice Hall, Englewood Cliffs, 1974, 340 pp.Google Scholar
  20. 20.
    G. E. Forsythe, M. A. Malcolm, and C. B. Moler, Computer Methods for Mathematical Computations, Prentice Hall, Englewood Cliffs, 1977, 259 pp.Google Scholar
  21. 21.
    M. L. Gribaudo, F. J. Knorr, and J. L. McHale, Spectrochim. Acta, 1985, 41A, 419.Google Scholar
  22. 22.
    E. N. Ushakov, S. P. Gromov, O. A. Fedorova, Y. V. Pershina, M. V. Alfimov, F. Barigelletti, L. Flamigni, and V. Balzani, J. Phys. Chem. A, 1999, 103, 11188.Google Scholar
  23. 23.
    I. T. Jolliff, Principal Component Analysis, Springer-Verlag, Berlin, 1986.Google Scholar
  24. 24.
    E. R. Malinowski, Factor Analysis in Chemistry, 2 ed., J. Wiley and Sons, New York, 1991.Google Scholar
  25. 25.
    A. G. Ryabenko, A. A. Ryabenko, and P. V. Fursikov, Zh. Anal. Khim., 2000, 55, 342 [Russ. J. Anal. Chem., 2000, 55 (Engl. Transl.)].Google Scholar
  26. 26.
    R. Hoffman, J. Chem. Phys., 1963, 39, 1397.CrossRefGoogle Scholar
  27. 27.
    W. Spaleck, M. Antberg, J. Rohrmann, J. Witner, B. Bachmann, P. Kiprof, J. Behm, and W. Herrmann, Angew. Chem., Int. Ed. Engl., 1992, 31, 1347.CrossRefGoogle Scholar
  28. 28.
    L. Resconi, L. Cavallo, A. Fait, and F. Piemontesi, Chem. Rev., 2000, 100, 1253.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • A. G. Ryabenko
    • 1
  • E. E. Faingol’d
    • 1
  • E. N. Ushakov
    • 1
  • N. M. Bravaya
    • 1
  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow RegionRussian Federation

Personalised recommendations