Russian Chemical Bulletin

, Volume 54, Issue 9, pp 1999–2002 | Cite as

Energy of compressed endoatoms and the energy capacity of small endohedral rare-gas fullerenes

  • A. A. Levin
  • N. N. Breslavskaya


The excess energies of the endoatoms within endofullerenes X@Cn (X = He, Ne, Ar; n = 20–50) as compared with the energies of the free atoms X were estimated using the simplest Thomas-Fermi model and density functional calculations at the B3LYP/6-311G* level. The energy capacities of the endofullerenes under study are primarily determined by the contributions of the compressed electronic systems of the endoatoms rather than the stretched fullerene cages.

Key words

compressed atoms energy capacity endofullerenes the Thomas-Fermi method density functional theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. L. Buchachenko, J. Phys. Chem. A., 2001, 105, 5839.CrossRefGoogle Scholar
  2. 2.
    N. N. Breslavskaya and A. L. Buchachenko, Khim. Fiz. [Chemical Physics], 2004, 23, 3 (in Russian).Google Scholar
  3. 3.
    N. N. Breslavskaya A. A. Levin and A. L. Buchachenko Izv. Akad. Nauk. Ser. Khim. 2004 19 [Russ. Chem. Bull., Int. Ed. 2004 53 18].Google Scholar
  4. 4.
    Z. Chen, H. Jiao, M. Bühl, A. Hirsch, and W. Thiel, Theor. Chem. Acc., 2001, 106, 352.Google Scholar
  5. 5.
    R. Q. Zhang, W. Y. Ma, K. L. Han, and C. S. Lee, Theor. Chem. Acc., 2003, 109, 278.Google Scholar
  6. 6.
    J. C. Slater and H. M. Krutter, Phys. Rev., 1935, 47, 559.CrossRefGoogle Scholar
  7. 7.
    P. Gombas, Die Statistische Theorie des Atoms und ihre Anwendungen, Wien, 1949.Google Scholar
  8. 8.
    P. W. Fowler and D. E. Manolopoulos, An Atlas of Fullerenes, Oxford Univ. Press, Oxford, 1995.Google Scholar
  9. 9.
    Z. Chen and W. Thiel, Chem. Phys. Lett., 2003, 367, 15.CrossRefGoogle Scholar
  10. 10.
    R. B. Darzynkiewich and G. Scuseria, J. Phys. Chem. A, 1997, 101, 7141.Google Scholar
  11. 11.
    J. B. Foresman and E. Frish, Exploring Chemistry with Electronic Structure Methods, 2nd ed., Pittsburgh, Gaussian, Inc., 1996, 302 p.Google Scholar
  12. 12.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, GAUSSIAN-98, Gaussian Inc., Pittsburgh (PA), 1998.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • A. A. Levin
    • 1
  • N. N. Breslavskaya
    • 1
  1. 1.N. S. Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussian Federation

Personalised recommendations