Advertisement

Russian Chemical Bulletin

, Volume 54, Issue 7, pp 1585–1592 | Cite as

Electrooxidative coupling of salts of nitro compounds with halide, nitrite, cyanide, and phenylsulfinate anions

  • A. I. Ilovaisky
  • V. M. Merkulova
  • Yu. N. Ogibin
  • G. I. Nikishin
Article

Abstract

Electrolysis of salts of primary and secondary nitro compounds (nitroethane, 1- and 2-nitropropanes, nitrocyclohexane, and nitrocycloheptane) in the presence of excess halide, nitrite, cyanide, and phenylsulfinate anions under undivided and divided amperostatic electrolysis conditions in a two-phase medium (CH2Cl2/H2O) produces geminal nitrohalides (35–85% yields), dinitro compounds (15–51%), nitronitriles (6–27%), and nitrosulfones (50–70%). The salts of secondary nitro compounds form the products of oxidative coupling with halide and phenylsulfinate anions under the undivided electrolysis conditions. In all other cases, divided electrolysis is required.

Key words

nitroethane 1- and 2-nitropropanes nitrocyclohexane nitrocycloheptane halides nitrites cyanides phenylsulfinates electrolysis electrooxidative coupling gem-nitrohalides gem-dinitro compounds gem-nitronitriles gem-nitrosulfones 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nitro Paraffin Symposium, Tetrahedron, 1963, 19,Suppl. 1, 3.Google Scholar
  2. 2.
    S. S. Novikov, G. A. Shvekhgeimer, V. V. Sevast'yanova, and V. A. Shlyaposhnikov, Khimiya alifaticheskikh i alitsiklicheskikh nitrosoedinenii [Chemistry of Aliphatic and Alicyclic Nitro Compounds], Khimiya, Moscow, 1974 (in Russian).Google Scholar
  3. 3.
    D. C. Inffland and G. X. Griner, J. Am. Chem. Soc., 1953, 75, 1047.Google Scholar
  4. 4.
    S. Trippett and D. M. Walker, J. Chem. Soc., 1960, 2976.Google Scholar
  5. 5.
    D. R. Levering, J. Org. Chem., 1962, 27, 2930.Google Scholar
  6. 6.
    A. L. Fridman, V. N. Ivshin, E. N. Ivshina, and S. S. Novikov, Izv. Akad. Nauk SSSR, Ser. Khim., 1969, 2617 [Bull. Acad. Sci. USSR, Div. Chem. Sci., 1969 (Engl. Transl.)].Google Scholar
  7. 7.
    N. Kornblum, M. M. Kestner, S. D. Boyd, and L. C. Cattran, J. Am. Chem. Soc., 1973, 95, 3356.Google Scholar
  8. 8.
    M. W. Barnes and J. M. Patterson, J. Org. Chem., 1976, 41, 733.CrossRefGoogle Scholar
  9. 9.
    A. S. Erickson and N. Kornblum, J. Org. Chem., 1977, 42, 3764.CrossRefGoogle Scholar
  10. 10.
    A. Amrollah-Madjdabadi, R. Beugekmaans, and A. Lechevaller, Synthesis, 1986, 828.Google Scholar
  11. 11.
    S. I. Al-Khalil and W. R. Bowman, Tetrahedron Lett., 1982, 43, 4513.Google Scholar
  12. 12.
    S. I. Al-Khalil and W. R. Bowman, J. Chem. Soc., Perkin Trans. 1, 1986, 555.Google Scholar
  13. 13.
    G. K. I. Prakash, J. J. Struckhoff, K. Weber, A. Schreiber, Jr., R. Bau, and G. A. Olah, J. Org. Chem., 1997, 62, 1872.Google Scholar
  14. 14.
    I. V. Tselinskii, S. F. Mel'nikova, and S. A. Fedotov, Izv. Akad. Nauk, Ser. Khim., 2002, 1354 [Russ. Chem. Bull., Int. Ed., 2002, 51, 1466].Google Scholar
  15. 15.
    L. W. Siegle and H. B. Haas, J. Org. Chem., 1940, 5, 100.Google Scholar
  16. 16.
    R. B. Kaplan and H. Schechter, J. Am. Chem. Soc., 1961, 83, 3535.Google Scholar
  17. 17.
    Z. Matacz, H. Piotrowska, and T. Urbanski, Polish J. Chem., 1979, 53, 187.Google Scholar
  18. 18.
    N. Kornblum, H. K. Singh, and W. J. Kelly, J. Org. Chem., 1983, 48, 332.CrossRefGoogle Scholar
  19. 19.
    J. J. Zeislstra and J. B. Engbergs, Rec. Trav. Chim., 1974, 93, 11.Google Scholar
  20. 20.
    A. T. O. M. Adebayo, W. R. Bowman, and W. G. Salt, Tetrahedron Lett., 1986, 27, 1943; J. Chem. Soc., Perkin Trans. 1, 1987, 2819.CrossRefGoogle Scholar
  21. 21.
    C. T. Bahner, Ind. Eng. Chem., 1962, 44, 317.Google Scholar
  22. 22.
    C. M. Wright and D. R. Levering, Tetrahedron, 1963, 19,Suppl. 1, 3.Google Scholar
  23. 23.
    C. M. Wright and G. A. Ward, J. Electrochem. Soc., 1965, 2, 11.Google Scholar
  24. 24.
    N. L. Weinberg and H. R. Weinberg, Chem. Rev., 1968, 68, 489.CrossRefGoogle Scholar
  25. 25.
    Yu. N. Ogibin, A. I. Ilovaisky, V. M. Merkulova, and G. I. Nikishin, Izv. Akad. Nauk, Ser. Khim., 2004, 2452 [Russ. Chem. Bull., Int. Ed., 2004, 53, 2558].Google Scholar
  26. 26.
    B. C. Gilbert and R. O. C. Norman, Can. J. Chem., 1982, 60, 1379.Google Scholar
  27. 27.
    Potentials in Aqueous Solutions, Ed. A. J. Bard, New York—Basel, 1985.Google Scholar
  28. 28.
    S. Wawzonek and T.-Y. Su, J. Electrochem. Soc., 1973, 120, 745.Google Scholar
  29. 29.
    V. A. Kokorekina, V. A. Petrosyan, and L. G. Feoktistov, Elektrosintez monomerov [Electrosynthesis of Monomers], Nauka, Moscow, 1980, 83 (in Russian).Google Scholar
  30. 30.
    V. A. Petrosyan, M. E. Niyazymbetov, and B. V. Lyalin, Izv. Akad. Nauk SSSR, Ser. Khim., 1987, 306 [Bull. Acad. Sci. USSR, Div. Chem. Sci., 1987 (Engl. Transl.)].Google Scholar
  31. 31.
    Yu. N. Ogibin, A. I. Ilovaisky, V. M. Merkulova, and G. I. Nikishin, Elektrokhimiya, 2003, 1363 [Russ. J. Electrochem., 2003 (Engl. Transl.)].Google Scholar
  32. 32.
    H. C. Brown, J. Chem. Soc., 1956, 1248.Google Scholar
  33. 33.
    Ya. L. Gol'dfarb and L. I. Belen'kii, Usp. Khim., 1960, 29, 470 [Russ. Chem. Rev., 1960, 29 (Engl. Transl.)].Google Scholar
  34. 34.
    P. Grundler and H. Choschzick, Z. Chem., 1972, 12, 274.Google Scholar
  35. 35.
    H. Feuer, Tetrahedron, 1964, 20,Suppl. 1, 103.Google Scholar
  36. 36.
    V. A. Petrosyan, M. E. Niyazymbetov, A. G. Bazanov, I. V. Tselinskii, and A. A. Fainzil'berg, Izv. Akad. Nauk SSSR, Ser. Khim., 1980, 2726 [Bull. Acad. Sci. USSR, Div. Chem. Sci., 1980 (Engl. Transl.)].Google Scholar
  37. 37.
    N. Kornblum, H. O. Larson, R. K. Blackwood, D. D. Mooberry, E. P. Oliveto, and G. E. Graham, J. Am. Chem. Soc., 1956, 78, 1497.Google Scholar
  38. 38.
    Patent; Purdue Res. Found.; US 2256839; 1938.Google Scholar
  39. 39.
    P. Levy, Chem. Ber., 1929, 62, 2497.Google Scholar
  40. 40.
    A. Amrollah-Madjdabadi, R. Beugelmans, and A. Lechevallier, Synthesis, 1986, 826.Google Scholar
  41. 41.
    D. C. Iffland, G. X. Criner, M. Koral, F. J. Lotspeich, Z. B. Papanastassiou, and S. M. White, Jr., J. Am. Chem. Soc., 1953, 75, 4044.Google Scholar
  42. 42.
    T. A. B. M. Bolsman and T. J. de Boer, Tetrahedron, 1975, 31, 1019.Google Scholar
  43. 43.
    A. H. Pagano and H. Shechter, J. Org. Chem., 1970, 35, 295.CrossRefGoogle Scholar
  44. 44.
    J. F. Tilney-Bassett and W. A. Waters, J. Chem. Soc., 1957, 3129.Google Scholar
  45. 45.
    P. A. Wade, H. R. Hinney, N. V. Amin, P. D. Vail, S. D. Morrow, S. A. Hardinger, and M. S. Saft, J. Org. Chem., 1981, 46, 765.Google Scholar
  46. 46.
    F. Benedetti and C. J. M. Stirling, J. Chem. Soc., Perkin Trans. 2, 1986, 605.Google Scholar
  47. 47.
    Z. Matacz, H. Piotrowska, and M. Poplawska, Bull. Pol. Acad. Sci. Chem., 1988, 36, 139.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • A. I. Ilovaisky
    • 1
  • V. M. Merkulova
    • 1
  • Yu. N. Ogibin
    • 1
  • G. I. Nikishin
    • 1
  1. 1.N. D. Zelinsky Institute of Organic ChemistryRussian Academy of SciencesMoscowRussian Federation

Personalised recommendations