Advertisement

Russian Chemical Bulletin

, Volume 54, Issue 6, pp 1433–1438 | Cite as

Kinetics of fast reactions of triplet states and radicals under photolysis of 4,4′-dimethylbenzophenone in the presence of 4-halophenols in micellar solutions of sodium dodecyl sulfate in magnetic field

  • P. P. Levin
  • N. B. Sul'timova
  • O. N. Chaikovskaya
Article

Abstract

Quenching kinetics of the 4,4′-dimethylbenzophenone triplet state with para-substituted phenol derivatives RC6H4OH (R = H, F, Cl, Br, I) was studied by nanosecond laser photolysis in aqueous micellar solutions of sodium dodecyl sulfate. The kinetic data were processed in the framework of a model with the Poisson distribution of phenols between micelles. The partition constants of RC6H4OH between the aqueous and micellar phases and the rate constants of their escape from a micelle and quenching of the 4,4′-dimethylbenzophenone triplet state with phenols in micelles were obtained. The quenching proceeds with high rate constants through hydrogen atom transfer to form the ketyl and phenoxyl radicals (no radicals are formed in the case of 4-iodophenol), which then recombine in a micelle or escape into the outer aqueous volume. The application of an external magnetic field retards radical pair recombination in a micelle and increases the fraction of radicals escaped into the aqueous phase. The quantum yield of radical pairs decreases 2.5-fold, and the rate of their recombination in micelles increases 2.5-fold on going from 4-chloro- to 4-bromophenol. This is caused by the acceleration of triplet radical pair recombination in the solvent cage.

Key words

4,4′-dimethylbenzophenone 4-halophenol laser photolysis triplet states hydrogen atom transfer radical recombination heavy atom effect magnetic effect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. P. Levin and V. A. Kuzmin, Izv. Akad. Nauk SSSR, Ser. Khim., 1986, 464 [Bull. Acad. Sci. USSR, Div. Chem. Sci., 1986, 35, 430 (Engl. Transl.)].Google Scholar
  2. 2.
    V. A. Kuzmin and P. P. Levin, Izv. Akad. Nauk SSSR, Ser. Khim., 1986, 1421 [Bull. Acad. Sci. USSR, Div. Chem. Sci., 1986, 35, 942 (Engl. Transl.)].Google Scholar
  3. 3.
    P. P. Levin and V. A. Kuzmin, Dokl. Akad. Nauk SSSR, 1987, 292, 134 [Dokl. Phys. Chem., 1987, 292, 26 (Engl. Transl.)].Google Scholar
  4. 4.
    V. A. Kuzmin and P. P. Levin, Izv. Akad. Nauk SSSR, Ser. Khim., 1987, 762 [Bull. Acad. Sci. USSR, Div. Chem. Sci., 1987, 36, 691 (Engl. Transl.)].Google Scholar
  5. 5.
    V. A. Kuzmin and P. P. Levin, Izv. Akad. Nauk SSSR, Ser. Khim., 1987, 1003 [Bull. Acad. Sci. USSR, Div. Chem. Sci., 1987, 36, 923 (Engl. Transl.)].Google Scholar
  6. 6.
    P. P. Levin, V. A. Kuzmin, and I. V. Khudyakov, Khim. Fiz. [Chemical Physics], 1989, 8, 902 (in Russian).Google Scholar
  7. 7.
    A. Z. Yankelevich, I. V. Khudyakov, P. P. Levin, and Yu. A. Serebrennikov, Izv. Akad. Nauk SSSR, Ser. Khim., 1989, 25 [Bull. Acad. Sci. USSR, Div. Chem. Sci., 1989, 38, 18 (Engl. Transl.)].Google Scholar
  8. 8.
    P. P. Levin and V. A. Kuzmin, Chem. Phys. Lett., 1990, 165, 302.CrossRefGoogle Scholar
  9. 9.
    P. P. Levin and V. A. Kuzmin, Chem. Phys., 1992, 162, 79.CrossRefGoogle Scholar
  10. 10.
    P. P. Levin, V. Ya. Shafirovich, and V. A. Kuzmin, J. Phys. Chem., 1992, 96, 10044.CrossRefGoogle Scholar
  11. 11.
    C. Evans, K. U. Ingold, and J. C. Scaiano, J. Phys. Chem., 1988, 92, 1257.Google Scholar
  12. 12.
    C. Evans, J. C. Scaiano, and K. U. Ingold, J. Am. Chem. Soc., 1992, 114, 140.Google Scholar
  13. 13.
    H. Murai, N. Ishawata, K. Kuwata, Y. Sakaguchi, and H. Hayashi, Chem. Phys. Lett., 1993, 203, 482.CrossRefGoogle Scholar
  14. 14.
    N. Ishawata, H. Murai, and K. Kuwata, Bull. Chem. Soc. Jpn, 1995, 68, 1315.Google Scholar
  15. 15.
    A. P. Parnachev, E. G. Bagryanskaya, and R. Z. Sagdeev, J. Phys. Chem. A, 1997, 101, 3855.CrossRefGoogle Scholar
  16. 16.
    P. K. Das, M. V. Encinas, and J. C. Scaiano, J. Am. Chem. Soc., 1981, 103, 4154.Google Scholar
  17. 17.
    P. K. Das and S. N. Bhattacharyya, J. Phys. Chem., 1981, 85, 1391.CrossRefGoogle Scholar
  18. 18.
    N. B. Sul'timova, P. P. Levin, and O. N. Chaikovskaya, Izv. Akad. Nauk, Ser. Khim., 2005, 1397 [Russ. Chem. Bull., Int. Ed., 2005, 54, 1439].Google Scholar
  19. 19.
    W. A. Massad, P. Repossi, and G. A. Arguello, J. Colloid Interface Sci., 2002, 255, 189.CrossRefGoogle Scholar
  20. 20.
    O. Rinco, M. H. Kleinman, and C. Bohne, Langmuir, 2001, 17, 5781.Google Scholar
  21. 21.
    V. F. Tarasov and M. D. E. Forbes, Spectrochim. Acta A, 2000, 56, 245.Google Scholar
  22. 22.
    Y. Fujiwara, Y. Taga, T. Tomonari, Y. Akimoto, T. Aoki, and Y. Tanimoto, Bull. Chem. Soc. Jpn, 2001, 74, 237.Google Scholar
  23. 23.
    J. R. Woodward and Y. Sakaguchi, J. Phys. Chem. A, 2001, 105, 4010.CrossRefGoogle Scholar
  24. 24.
    J. C. Scaiano and D.-G. Lougnot, J. Phys. Chem., 1984, 88, 3379.CrossRefGoogle Scholar
  25. 25.
    M.-P. Pileni and M. Gratzel, J. Phys. Chem., 1980, 84, 1822.Google Scholar
  26. 26.
    D. M. Togashi and S. M. B. Costa, Phys. Chem. Chem. Phys., 2002, 4, 1141.CrossRefGoogle Scholar
  27. 27.
    M. Gratzel and K. Kalyanasundaram, Kinetics and Catalysis in Microheterogeneous Systems, Marcel Dekker, New York, 1991, 38.Google Scholar
  28. 28.
    M. Tachiya and G. R. Freeman, Kinetics of Non-homogeneous Processes, Wiley, New York, 1987, 575.Google Scholar
  29. 29.
    F. H. Quina, P. M. Nassar, J. B. S. Bonilha, and B. L. Bales, J. Phys. Chem., 1995, 99, 17028.Google Scholar
  30. 30.
    B. L. Bales and M. Almgren, J. Phys. Chem., 1995, 99, 15153.Google Scholar
  31. 31.
    Y. Ishihama, Y. Oda, K. Uchikawa, and N. Asakawa, Anal. Chem., 1995, 67, 1588.CrossRefGoogle Scholar
  32. 32.
    S. Takeda, S. Wakida, M. Yamane, K. Higashi, and S. Terabe, J. Chromatogr. A, 1997, 781, 11.CrossRefGoogle Scholar
  33. 33.
    C.-E. Lin, M.-J. Chen, H.-C. Huang, and H.-W. Chen, J. Chromatogr. A, 2001, 924, 83.CrossRefGoogle Scholar
  34. 34.
    U. E. Steiner and T. Ulrich, Chem. Rev., 1989, 89, 51.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • P. P. Levin
    • 1
  • N. B. Sul'timova
    • 1
  • O. N. Chaikovskaya
    • 2
  1. 1.N. M. Emanuel Institute of Biochemical PhysicsRussian Academy of SciencesMoscowRussian Federation
  2. 2.Siberian Physical Technical InstituteTomsk State UniversityTomskRussian Federation

Personalised recommendations