Advertisement

Russian Chemical Bulletin

, Volume 54, Issue 6, pp 1378–1382 | Cite as

Pulse radiolysis study of I oxidation with radical anions Cl2 ⋅− in an aqueous solution

  • B. G. Ershov
  • E. Janata
  • A. V. Gordeeva
Article
  • 61 Downloads

Abstract

Radiation-chemical transformations of chloride solutions in the presence of iodide additives were studied by pulse radiolysis. Radical anion Cl2 ⋅− oxidize I ion, while in the secondary reactions Cl2 reacts with I to form a mixed trihalide ion ICl2 . A reaction model that satisfactorily describes the experimental data was proposed.

Key words

pulse radiolysis redox reactions halides chlorine iodine ions radicals kinetics reaction mechanism reaction rate constants 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. G. Ershov, Usp. Khim., 2004, 73, 107 [Russ. Chem. Rev., 2004, 73 (Engl. Transl.)].Google Scholar
  2. 2.
    P. Neta, R. E. Huie, and A. B. Ross, J. Phys. Chem. Ref. Data, 1988, 17, 1027.Google Scholar
  3. 3.
    B. G. Ershov, M. Kelm, A. V. Gordeev, and E. Janata, Phys. Chem. Chem. Phys., 2002, 4, 1872.CrossRefGoogle Scholar
  4. 4.
    G. G. Jayson, B. J. Parsons, and A. J. Swallow, J. Chem. Soc., Faraday Trans. 1, 1973, 69, 1579.Google Scholar
  5. 5.
    D. Zehahi and J. Rabany, J. Phys. Chem., 1972, 76, 312.Google Scholar
  6. 6.
    P. Wardman, J. Phys. Chem. Ref. Data, 1989, 18, 1711.CrossRefGoogle Scholar
  7. 7.
    E. Janata, Radiat. Phys. Chem., 1992, 40, 437.Google Scholar
  8. 8.
    E. Janata, Radiat. Phys. Chem., 1994, 44, 449.CrossRefGoogle Scholar
  9. 9.
    E. Janata and W. Gutsch, Radiat. Phys. Chem., 1998, 51, 65.Google Scholar
  10. 10.
    G. L. Hug, Optical Spectra of Nonmetallic Inorganic Transient Species in Aqueous Solution, NSRDS-NBS, Washington, 1981.Google Scholar
  11. 11.
    G. V. Buxton, C. L. Greenstock, W. P. Helman, and A. B. Ross, J. Phys. Chem. Ref. Data, 1988, 17, 513.Google Scholar
  12. 12.
    E. Janata and R. H. Schuler, J. Phys. Chem., 1982, 86, 2078.CrossRefGoogle Scholar
  13. 13.
    D. W. Margerum, P. N. Dickson, J. C. Nagy, K. Kumar, C. P. Bowers, and K. D. Fogelman, Inorg. Chem., 1986, 25, 4900.CrossRefGoogle Scholar
  14. 14.
    V. Nagarajan and R. W. Fessenden, J. Phys. Chem., 1985, 89, 2330.CrossRefGoogle Scholar
  15. 15.
    B. G. Ershov, A. V. Gordeev, E. Janata, and M. Kelm, Mendeleev Commun., 2001, 4, 149.Google Scholar
  16. 16.
    B. G. Ershov, M. Kelm, E. Janata, and A. V. Gordeev, Radiochem. Acta, 2002, 90, 617.Google Scholar
  17. 17.
    S. Navaratnam, B. Parsons, and A. J. Swallow, Radiat. Phys. Chem., 1980, 15, 159.Google Scholar
  18. 18.
    P. Pagsberg, G. Fenger, and S. O. Nielsen, J. Phys. Chem., 1969, 73, 1029.CrossRefGoogle Scholar
  19. 19.
    H. A. Schwarz and B. H. J. Bielski, J. Phys. Chem., 1986, 90, 1445.CrossRefGoogle Scholar
  20. 20.
    A. J. Elliot, Can. J. Chem., 1992, 70, 1658.Google Scholar
  21. 21.
    I. G. Draganic and Z. D. Draganic, The Radiation Chemistry of Water, Academic Press, New York— London, 1971.Google Scholar
  22. 22.
    E. Peled, D. Meisel, and G. Czapski, J. Phys. Chem., 1972, 76, 3677.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • B. G. Ershov
    • 1
  • E. Janata
    • 2
  • A. V. Gordeeva
    • 1
  1. 1.Institute of Physical ChemistryRussian Academy of SciencesMoscowRussian Federation
  2. 2.Hahn-Meitner InstituteBerlinGermany

Personalised recommendations