Russian Chemical Bulletin

, Volume 54, Issue 3, pp 719–725 | Cite as

New approaches to synthesis of tris[1,2,4]triazolo[1,3,5]triazines

  • V. A. Tartakovsky
  • A. E. Frumkin
  • A. M. Churakov
  • Yu. A. Strelenko


Thermal cyclization of 3-R-5-chloro-1,2,4-triazoles (R = Cl, Ph) afforded 2,6,10-tri-R- tris[1,2,4]triazolo[1,5-a:1′,5′c:1″,5″-e][1,3,5]triazines 5 (R = Ph) and 7 (R = Cl). These compounds are first representatives of this class of heterocycles, whose structures were unambiguously established. Treatment of these compounds with nucleophiles (H2O/NaOH, NH3) results in the triazine ring opening to give compounds consisting of three 1,2,4-triazole rings linked in a chain. For example, treatment of cyclic compound 5 with aqueous alkali affords 3-phenyl-1-3-phenyl-1-(3-phenyl-1H-1,2,4-triazol-5-yl)-1,2,4-triazol-5-yl-1H-1,2,4-triazol-5-one. Treatment of 3,7,11-triphenyltris[1,2,4]triazolo[4,3-a:4′,3′c:4″,3″-e][1,3,5]triazine (2) with HCl/SbCl5 leads to the triazine ring opening giving rise to 5-(3-chloro-5-phenyl-1,2,4-triazol-4-yl)-3-phenyl-4-(5-phenyl-1H-1,2,4-triazol-3-yl)-1,2,4-triazole. Thermal cyclization of the latter produces 3,7,10-triphenyltris[1,2,4]triazolo[1,5-a:4′,3′c:4″,3″-e][1,3,5]triazine (13). Thermolysis of both cyclic compound 2 and cyclic compound 13 is accompanied by the Dimroth rearrangement to yield 3,6,10-triphenyl-tris[1,2,4]triazolo[1,5-a:1′, 5′-c:4″,3″-e][1,3,5]triazine (14). Compounds 13 and 14 are the first representatives of cyclic compounds with this skeleton. 13C NMR spectroscopy allows the determination of the isomer type in a series of tris[1,2,4]triazolo[1,3,5]triazines.

Key words

fused heterocycles nitrogen heterocycles 1,2,4-triazoles 1,3,5-triazines tris[1,2,4]triazolo[1,3,5]triazine pyrolysis Dimroth rearrangement synthetic methods 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. A. Hofmann and O. Erhart, Chem. Ber., 1912, 45, 2731.Google Scholar
  2. 2.
    D. W. Kaiser, G. A. Peters, and V. P. Wystrach, J. Org. Chem., 1953, 18, 1610.CrossRefGoogle Scholar
  3. 3.
    R. Huisgen, H. V. Sturm, and M. Seidel, Chem. Ber., 1961, 94, 1555.Google Scholar
  4. 4.
    E. R. Lavagnino and D. C. Thompson, J. Heterocycl. Chem., 1972, 9, 149.Google Scholar
  5. 5.
    E. C. Coad, J. Kampf, and P. G. Rasmussen, J. Org. Chem., 1996, 61, 6666.CrossRefPubMedGoogle Scholar
  6. 6.
    K. Zauer, I. Zauer-Csullog, and K. Lempert, Chem Ber., 1973, 106, 1628.Google Scholar
  7. 7.
    M. Wahren, Z. Chem., 1969, 9, 241.Google Scholar
  8. 8.
    H.-O. Kalinowski, S. Berger, and S. Braun, Carbon-13 NMR Spectroscopy, Wiley, New York, 1988, p. 386.Google Scholar
  9. 9.
    V. Ya. Grinshtein and G. I. Chipen, Zh. Obshch. Khim., 1961, 31, 886 [J. Gen. Chem. USSR, 1961, 31 (Engl. Transl.)].Google Scholar
  10. 10.
    M. Sato, N. Fukada, M. Kuranchi, and T. Takeshima, Synthesis, 1981, 7, 554.CrossRefGoogle Scholar
  11. 11.
    T. I. Yushmanova, E. N. Medvedeva, L. I. Volkova, V. V. Makarskii, V. A. Lopyrev, and M. G. Voronkov, Khim. Geterotsikl. Soedin., 1976, 3, 421 [Chem. Heterocycl. Compd., 1976, 3 (Engl. Transl.)].Google Scholar
  12. 12.
    R. Stole and W. Dietrich, J. Prakt. Chem. [2], 1934, 139, 193.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • V. A. Tartakovsky
    • 1
  • A. E. Frumkin
    • 1
  • A. M. Churakov
    • 1
  • Yu. A. Strelenko
    • 1
  1. 1.N. D. Zelinsky Institute of Organic ChemistryRussian Academy of SciencesMoscowRussian Federation

Personalised recommendations