Skip to main content
Log in

New approaches to synthesis of tris[1,2,4]triazolo[1,3,5]triazines

  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Thermal cyclization of 3-R-5-chloro-1,2,4-triazoles (R = Cl, Ph) afforded 2,6,10-tri-R- tris[1,2,4]triazolo[1,5-a:1′,5′c:1″,5″-e][1,3,5]triazines 5 (R = Ph) and 7 (R = Cl). These compounds are first representatives of this class of heterocycles, whose structures were unambiguously established. Treatment of these compounds with nucleophiles (H2O/NaOH, NH3) results in the triazine ring opening to give compounds consisting of three 1,2,4-triazole rings linked in a chain. For example, treatment of cyclic compound 5 with aqueous alkali affords 3-phenyl-1-3-phenyl-1-(3-phenyl-1H-1,2,4-triazol-5-yl)-1,2,4-triazol-5-yl-1H-1,2,4-triazol-5-one. Treatment of 3,7,11-triphenyltris[1,2,4]triazolo[4,3-a:4′,3′c:4″,3″-e][1,3,5]triazine (2) with HCl/SbCl5 leads to the triazine ring opening giving rise to 5-(3-chloro-5-phenyl-1,2,4-triazol-4-yl)-3-phenyl-4-(5-phenyl-1H-1,2,4-triazol-3-yl)-1,2,4-triazole. Thermal cyclization of the latter produces 3,7,10-triphenyltris[1,2,4]triazolo[1,5-a:4′,3′c:4″,3″-e][1,3,5]triazine (13). Thermolysis of both cyclic compound 2 and cyclic compound 13 is accompanied by the Dimroth rearrangement to yield 3,6,10-triphenyl-tris[1,2,4]triazolo[1,5-a:1′, 5′-c:4″,3″-e][1,3,5]triazine (14). Compounds 13 and 14 are the first representatives of cyclic compounds with this skeleton. 13C NMR spectroscopy allows the determination of the isomer type in a series of tris[1,2,4]triazolo[1,3,5]triazines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. A. Hofmann and O. Erhart, Chem. Ber., 1912, 45, 2731.

    Google Scholar 

  2. D. W. Kaiser, G. A. Peters, and V. P. Wystrach, J. Org. Chem., 1953, 18, 1610.

    Article  Google Scholar 

  3. R. Huisgen, H. V. Sturm, and M. Seidel, Chem. Ber., 1961, 94, 1555.

    Google Scholar 

  4. E. R. Lavagnino and D. C. Thompson, J. Heterocycl. Chem., 1972, 9, 149.

    Google Scholar 

  5. E. C. Coad, J. Kampf, and P. G. Rasmussen, J. Org. Chem., 1996, 61, 6666.

    Article  PubMed  Google Scholar 

  6. K. Zauer, I. Zauer-Csullog, and K. Lempert, Chem Ber., 1973, 106, 1628.

    Google Scholar 

  7. M. Wahren, Z. Chem., 1969, 9, 241.

    Google Scholar 

  8. H.-O. Kalinowski, S. Berger, and S. Braun, Carbon-13 NMR Spectroscopy, Wiley, New York, 1988, p. 386.

    Google Scholar 

  9. V. Ya. Grinshtein and G. I. Chipen, Zh. Obshch. Khim., 1961, 31, 886 [J. Gen. Chem. USSR, 1961, 31 (Engl. Transl.)].

    Google Scholar 

  10. M. Sato, N. Fukada, M. Kuranchi, and T. Takeshima, Synthesis, 1981, 7, 554.

    Article  Google Scholar 

  11. T. I. Yushmanova, E. N. Medvedeva, L. I. Volkova, V. V. Makarskii, V. A. Lopyrev, and M. G. Voronkov, Khim. Geterotsikl. Soedin., 1976, 3, 421 [Chem. Heterocycl. Compd., 1976, 3 (Engl. Transl.)].

    Google Scholar 

  12. R. Stole and W. Dietrich, J. Prakt. Chem. [2], 1934, 139, 193.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 706–712, March, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tartakovsky, V.A., Frumkin, A.E., Churakov, A.M. et al. New approaches to synthesis of tris[1,2,4]triazolo[1,3,5]triazines. Russ Chem Bull 54, 719–725 (2005). https://doi.org/10.1007/s11172-005-0310-8

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-005-0310-8

Key words

Navigation