Russian Chemical Bulletin

, Volume 54, Issue 3, pp 623–632 | Cite as

Synthesis of 1,3-bis(acetylacetonyloxy)- and 1,3-bis(benzoylacetonyloxy)benzene and their complexation with lanthanide ions

  • S. N. Podyachev
  • I. A. Litvinov
  • A. R. Mustafina
  • R. R. Shagidullin
  • W. D. Habicher
  • A. I. Konovalov


Claisen condensation of 1,3-bis(methoxycarbonylmethoxy)benzene with acetone and acetophenone afforded new chelating ligands consisting of two β-diketonate fragments, viz., 1,3-bis(acetylacetonyloxy)benzene and 1,3-bis(benzoylacetonyloxy)benzene, which are linked to each other through the resorcinol spacer. In the crystal, 1,3-bis(acetylacetonyloxy)benzene, unlike the starting ester, adopts a planar conformation and exists in the enol form. The acidities of these compounds and their complexation with lanthanide ions in aqueous ethanolic solutions were studied by pH-potentiometry. Depending on the concentration conditions and pH, the La3+, Gd3+, and Lu3+ ions form 1 : 1, 1 : 2, or 1 : 3 complexes with bis(β-diketones). The stability of the complexes increases as the atomic number of the lanthanide increases (La3+ < Gd3+ ≤ Lu3+). The complexation constants and selectivity of complexation substantially increase with increasing degree of deprotonation of the ligands, which indicates that both chelate groups of the ligands are simultaneously involved in coordination. The Ph substituents in bis(β-diketone) have a considerable effect on the composition and stability of complexes with lanthanide ions due to additional noncovalent inner-sphere interactions.

Key words

β-diketone X-ray diffraction analysis pH potentiometry complexation lanthanides stability constants 1,3-bis(acetylacetonyloxy)benzene 1,3-bis(benzoylacetonyloxy)benzene 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. J. Otway and W. S. Rees, Coord. Chem. Rev., 2000, 210, 279.CrossRefGoogle Scholar
  2. 2.
    T. N. Parac-Vogt, K. Binnemans, and C. Gorller-Walrand, J. Chem. Soc., Dalton Trans., 2002, 1602.Google Scholar
  3. 3.
    S. N. Podyachev, A. R. Mustafina, and W. D. Habicher, Izv. Akad. Nauk, Ser. Khim., 2003, 70 [Russ. Chem. Bull., Int. Ed., 2003, 52, 73 (Engl. Transl.)].Google Scholar
  4. 4.
    S. N. Podyachev, A. R. Mustafina, A. H. Koppehele, M. Gruner, W. D. Habicher, B. I. Buzykin, and A. I. Konovalov, Izv. Akad. Nauk, Ser. Khim., 2004, 1134 [Russ. Chem. Bull., Int. Ed., 2004, 53, 1181 (Engl. Transl.)].Google Scholar
  5. 5.
    D. F. Martin, M. Shamma, and W. C. Fernelius, J. Am. Chem. Soc., 1958, 80, 4891.CrossRefGoogle Scholar
  6. 6.
    D. F. Martin, M. Shamma, and W. C. Fernelius, J. Am. Chem. Soc., 1959, 81, 130.CrossRefGoogle Scholar
  7. 7.
    A. W. Maverick, S. C. Buckingham, Q. Yao, J. R. Bradbury, and G. G. Stanley, J. Am. Chem. Soc., 1986, 108, 7430.CrossRefGoogle Scholar
  8. 8.
    A. W. Maverick, D. R. Billodeaux, M. L. Ivie, F. R. Fronczek, and E. F. Maverick, J. Inclus. Phenomena and Macrocycl. Chem., 2001, 39, 19.CrossRefGoogle Scholar
  9. 9.
    K. Fujimoto and S. Shinkai, Tetrahedron Lett., 1994, 35, 2915.CrossRefGoogle Scholar
  10. 10.
    J. M. Sprague, L. J. Beckham, and H. Adkins, J. Am. Chem. Soc., 1934, 56, 2665.CrossRefGoogle Scholar
  11. 11.
    V. I. Dulenko and S. V. Tolkunov, Khim. Geterotsikl. Soedin., 1987, 889 [Chem. Heterocycl. Compd., 1987 (Engl. Transl.)].Google Scholar
  12. 12.
    S. V. Tolkunov, Khim. Geterotsikl. Soedin., 1998, 1335 [Chem. Heterocycl. Compd., 1998 (Engl. Transl.)].Google Scholar
  13. 13.
    L. J. Bellamy, The Infra-red Spectra of Complex Molecules, Methuen and Co Ltd—J. Wiley and Sons Inc., London—New York, 1957.Google Scholar
  14. 14.
    T. Sugimori, H. Masuda, and N. Ohata, Inorg. Chem., 1997, 36, 576.CrossRefGoogle Scholar
  15. 15.
    S. Ali, A. Sajadi, B. Song, and H. Sigel, Inorg. Chim. Acta, 1998, 283, 193.CrossRefGoogle Scholar
  16. 16.
    N. A. Kostromina, V. N. Kumok, amd N. A. Skorik, Khimiya koordinatsionnykh soedinenii [Chemistry of Coordination Compounds], Vysshaya Shkola, Moscow, 1990, 432 pp. (in Russian).Google Scholar
  17. 17.
    D. T. Gryko, P. Piatek, and J. Jurczak, Tetrahedron, 1997, 53, 7957.CrossRefGoogle Scholar
  18. 18.
    Technique of Organic Chemistry. V. VII. Organic Solvents. Physical Properties and Methods of Purification, Ed. A. Weissberger, Intersci. Publ., New York, 1955, 472 pp.Google Scholar
  19. 19.
    Computational Chemistry, HyperChem Manual, Hypercube Inc., Waterloo, Ontario, Canada, 2002.Google Scholar
  20. 20.
    HyperChem 7.03 Molecular Mechanics and Quantum Chemical Calculations Package, HyperCub Inc., Canada, 2002.Google Scholar
  21. 21.
    A. Altomare, G. Cascarano, C. Giacovazzo, and D. Viterbo, Acta Crystallogr., Sect. A, 1991, 47, 744.Google Scholar
  22. 22.
    L. H. Straver and A. J. Schierbeek, MolEN. Structure Determination System, Nonius B. V., 1994, 1, 2, 240 pp.Google Scholar
  23. 23.
    A. L. Spek, Acta Crystallogr., Sect. A, 1990, 46, 34.Google Scholar
  24. 24.
    V. V. Aleksandrov, Kislotnost’ nevodnykh rastvorov [Acidities of Nonaqueous Solutions], Vishcha Shkola, Kharkov, 1982, 159 pp. (in Russian).Google Scholar
  25. 25.
    O. Popovych, Anal. Chem., 1964, 36, 878.CrossRefGoogle Scholar
  26. 26.
    Yu. I. Sal’nikov, A. N. Glebov, and F. V. Devyatov, Poliyadernye kompleksy v rastvorakh [Polynuclear Complexes in Solution], Izd-vo KGU, Kazan, 1989, 287 pp. (in Russian).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • S. N. Podyachev
    • 1
  • I. A. Litvinov
    • 1
  • A. R. Mustafina
    • 1
  • R. R. Shagidullin
    • 1
  • W. D. Habicher
    • 2
  • A. I. Konovalov
    • 1
  1. 1.A. E. Arbuzov Institute of Organic and Physical ChemistryKazan Research Center of the Russian Academy of SciencesKazanRussian Federation
  2. 2.Dresden University of TechnologyInstitute of Organic ChemistryDresdenGermany

Personalised recommendations