Russian Chemical Bulletin

, Volume 53, Issue 10, pp 2269–2275 | Cite as

New materials based on tubular nanodimensional structures 1. Synthesis, structural studies and determination of interproton distances in solutions of functionalized thiacalix[4]arenes according to NMR spectroscopic data (NOESY)

  • I. I. Stoikov
  • D. Sh. Ibragimova
  • I. S. Antipin
  • A. I. Konovalov
  • T. A. Gadiev
  • B. I. Khairutdinov
  • F. Kh. Karataeva
  • V. V. Klochkov


New derivatives of p-tert-butylthiacalix[4]arene were synthesized. The conformation of the macrocycles and interproton distances in the synthesized thiacalix[4]arenes in solutions were determined by NMR spectroscopy. p-tert-Butylthiacalix[4]arene distally disubstituted at the lower rim adopts the cone conformation, and the tetrasubstituted products are formed in the 1,3-alternate conformation.

Key words

thiacalix[4]arene alkylation NOESY NMR spectroscopy nanostructures stereoisomers 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. M. Fyles and W. F. Van Straaten-Nijenhuis, Ion Channel Models, in Comprehensive Supramolecular Chemistry, Pergamon Press, Oxford, 1996, 10, 53.Google Scholar
  2. 2.
    M. Sugawara, A. Hirano, P. Buhlmann, and Y. Umezawa, Bull. Chem. Soc. Jpn., 2002, 75, 187.CrossRefGoogle Scholar
  3. 3.
    I. I. Stoikov, I. S. Antipin, and A. I. Konovalov, Usp. Khim., 2003, 72, 1190 [Russ. Chem. Rev., 2003, 72, 1055 (Engl. Transl.)].Google Scholar
  4. 4.
    L. Jullien, T. Lazrac, J. Canceill, L. Lacombe, and J.-M. Lehn, J. Chem. Soc., Perkin Trans. 2, 1993, 1011.Google Scholar
  5. 5.
    M. J. Pregel, L. Jullien, J. Canceill, L. Lacombe, and J.-M. Lehn, J. Chem. Soc., Perkin Trans. 2, 1995, 417.Google Scholar
  6. 6.
    Y. Tanaka, Y. Kobuke, and M. Sokabe, Angew. Chem., Int. Ed. Engl., 1995, 34, 693.Google Scholar
  7. 7.
    A. Karlin and M. H. Akabas, Neuron, 1995, 15, 1231.CrossRefPubMedGoogle Scholar
  8. 8.
    C. D. Gutsche, in Calixarenes, Ed. J. F. Stoddart, Royal Society of Chemistry, Cambridge, 1989, 225.Google Scholar
  9. 9.
    A. Ikeda and S. Shinkai, J. Am. Chem. Soc., 1994, 116, 3102.CrossRefGoogle Scholar
  10. 10.
    A. Ikeda and S. Shinkai, Chem. Rev., 1997, 97, 1713.CrossRefPubMedGoogle Scholar
  11. 11.
    V. Sidorov, F. W. Kotch, G. Abdrakhmanova, R. Mizani, J. C. Fettinger, and J. T. Davis, J. Am. Chem. Soc., 2002, 124, 2267.CrossRefPubMedGoogle Scholar
  12. 12.
    F. W. Kotch, V. Sidorov, Y.-F. Lam, K. J. Kayser, H. Li, M. S. Kaucher, and J. T. Davis, J. Am. Chem. Soc., 2003, 125, 15140.CrossRefPubMedGoogle Scholar
  13. 13.
    E. A. Shokova and V. V. Kovalev, Zh. Org. Khim., 2003, 39, 13 [Russ. J. Org. Chem., 2003, 39 (Engl. Transl.)].Google Scholar
  14. 14.
    Z. Asfari, V. Bohmer, J. Harrowfield, J. Vicens, and M. Saadioui, Calixarenes 2001, Kluwer Academic Press, Dordrecht, 2001, 683.Google Scholar
  15. 15.
    M. Pons and O. Millet, Progress in Nuclear Magnetic Resonance Spectroscopy, 2001, 38, 267.CrossRefGoogle Scholar
  16. 16.
    Dynamic Nuclear Magnetic Resonance Spectroscopy, Eds L. M. Jackman and F. A. Cotton, Acad. Press, London, 1975, 660 p.Google Scholar
  17. 17.
    J. Sandstrom, Dynamic NMR Spectroscopy, Acad. Press, London, 1982, 226 p.Google Scholar
  18. 18.
    M. Oki, Application of Dynamic NMR Spectroscopy to Organic Chemistry, VCH Publishers, Inc., New York, 1985, 423 p.Google Scholar
  19. 19.
    R. R. Ernst, B. Bodenhausen, and A. Wokaun, Principles of Nuclear Magnetic Resonance in One and Two Dimensions, Oxford University Press, Oxford, 1987, 610 p.Google Scholar
  20. 20.
    Van der Ven and J. M. Frank, Multidimensional NMR in Liquids: Basic Principles and Experimental Methods, Wiley-VCH, Toronto, 1995, 399 p.Google Scholar
  21. 21.
    S. Macura and R. R. Ernst, Molecular Physics, 1980, 41, 95.Google Scholar
  22. 22.
    S. Macura, Y. Huang, D. Suter, and R. R. Ernst, J. Magn. Reson., 1981, 43, 259.Google Scholar
  23. 23.
    M. Kock and C. Griesinger, Angew. Chem., Int. Ed. Engl., 1994, 33, 332.Google Scholar
  24. 24.
    T. Geppert, M. Kock, M. Reggelin, and C. Griesinger, J. Magn. Reson., Ser. B, 1995, 107, 91.Google Scholar
  25. 25.
    V. V. Klochkov, F. Kh. Karatayeva, R. A. Shaikhutdinov, B. I. Khairutdinov, M.-A. Molins, and M. Pons, Appl. Magn. Reson., 2002, 22, 431.Google Scholar
  26. 26.
    T. A. Gadiev, B. I. Khairutdinov, R. A. Shaikhutdinov, and V. V. Klochkov, Novosti YaMR v pis’makh [NMR News in Letters], 2002, 2, 1435 (in Russian).Google Scholar
  27. 27.
    H. Kumagai, M. Hasegawa, S. Miyanari, Y. Sugawa, Y. Sato, T. Hori, S. Ueda, H. Kamiyama, and S. Miyano, Tetrahedron Lett., 1997, 38, 3971.CrossRefGoogle Scholar
  28. 28.
    T. Sone, Y. Ohba, K. Moriya, H. Kumada, and K. Ito, Tetrahedron Lett., 1997, 53, 10689.Google Scholar
  29. 29.
    V. V. Klochkov, B. I. Khairutdinov, R. A. Shaikhutdinov, M. Findaisen, and S. Berger, Zh. Obshch. Khim., 2001, 71, 1339 [Russ. J. Gen. Chem., 2001, 71 (Engl. Transl.)].Google Scholar
  30. 30.
    T. A. Gadiev, B. I. Khairutdinov, R. A. Shaikhutdinov, F. Kh. Karatayeva, A. V. Aganov, V. V. Klochkov, M.-A. Molins, and M. Pons, Appl. Magn. Reson., 2003, 25, 347.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  • I. I. Stoikov
    • 1
  • D. Sh. Ibragimova
    • 1
  • I. S. Antipin
    • 1
  • A. I. Konovalov
    • 1
  • T. A. Gadiev
    • 1
  • B. I. Khairutdinov
    • 1
  • F. Kh. Karataeva
    • 1
  • V. V. Klochkov
    • 1
  1. 1.Kazan State UniversityKazanRussian Federation

Personalised recommendations