Advertisement

Russian Chemical Bulletin

, Volume 53, Issue 10, pp 2135–2141 | Cite as

Cluster cyanide-bridged heterometallic coordination polymers: synthesis and crystal structures of compounds [{Cu2(dien)2(CN)}2{Mo4Te4(CN)12}]·14.5H2O and (H3O)3K[{Mn(H2O)2}2{Mn(H2O)2(NO3)}4{W4Te4(CN)12}2]·8H2O

  • I. V. Kalinina
  • D. G. Samsonenko
  • A. V. Gerasimenko
  • V. P. Fedin
Article

Abstract

The reactions of anionic molybdenum and tungsten cyanide cuboidal clusters with CuII and MnII salts afforded two new cyanide-bridged heterometallic coordination polymers with the composition [{Cu2(dien)2(CN)}2{Mo4Te4(CN)12}]⋅14.5H2O (1) and (H3O)3K[{Mn(H2O)2}2{Mn(H2O)2(NO3)}4{W4Te4(CN)12}2]·8H2O (2). The structures of these compounds were established by X-ray diffraction analysis. Compound 1 has a layered structure, in which the cuboidal cluster fragments {Mo4Te4(CN)12}6− are linked to the copper atoms of the dinuclear fragments {(H2O)(dien)Cu(μ-CN)Cu(dien)(H2O)} through the bridging CN groups. Coordination polymer 2 has a framework structure, in which the cluster fragments {W4Te4(CN)12}6− are linked to the manganese(II) aqua complexes of two types, viz., the dinuclear fragment {Mn(μ2-H2O)2Mn} and the tetranuclear cyclic fragment {(H2O)2Mn(μ2-NO3)}4, through the bridging CN groups.

Key words

clusters molybdenum tungsten tellurium coordination polymers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. R. Dunbar and R. A. Heintz, Prog. Inorg. Chem., 1997, 45, 283.Google Scholar
  2. 2.
    T. Iwamoto, in Comprehensive Supramolecular Chemistry, Eds J. L. Atwood, J. E. D. Davies, D. D. Macnicol, and F. Vogtle, Pergamon, 1996, 6, 643.Google Scholar
  3. 3.
    B. H. Chadwick and A. G. Sharpe, Adv. Inorg. Chem. Radiochem., 1966, 8, 83.Google Scholar
  4. 4.
    I. V. Tananaev, G. B. Seifer, Yu. Ya. Kharitonov, V. G. Kuznetsov, and A. P. Korol’kov, Khimiya ferrotsianidov [Chemistry of Ferrocyanides], Nauka, Moscow, 1971, 320 pp. (in Russian).Google Scholar
  5. 5.
    N. G. Naumov, A. V. Virovets, and V. E. Fedorov, Zh. Strukt. Khim., 2000, 41, 609 [Russ. J. Struct. Chem., 2000, 41 (Engl. Transl.)].Google Scholar
  6. 6.
    N. G. Naumov, A. V. Virovets, M. N. Sokolov, S. B. Artemkina, and V. E. Fedorov, Angew. Chem., Int. Ed., 1998, 37, 1943.Google Scholar
  7. 7.
    N. G. Naumov, S. B. Artemkina, A. V. Virovets, and V. E. Fedorov, J. Solid State Chem., 2000, 153, 195.CrossRefGoogle Scholar
  8. 8.
    N. G. Naumov, A. V. Virovets, and V. E. Fedorov, Inorg. Chem. Commun., 2000, 3, 71.Google Scholar
  9. 9.
    M. P. Shores, L. G. Beauvais, and J. R. Long, J. Am. Chem. Soc., 1999, 121, 775.CrossRefGoogle Scholar
  10. 10.
    Yu. V. Mironov, A. V. Virovets, S. B. Artemkina, and V. E. Fedorov, Angew. Chem., Int. Ed., 1998, 37, 2507.Google Scholar
  11. 11.
    Yu. V. Mironov, A. V. Virovets, W. S. Sheldrick, and V. E. Fedorov, Polyhedron, 2000, 20, 969.CrossRefGoogle Scholar
  12. 12.
    Yu. V. Mironov, V. E. Fedorov, I. Ijjaali, and J. A. Ibers, Inorg. Chem., 2001, 40, 6320.CrossRefPubMedGoogle Scholar
  13. 13.
    Yu. V. Mironov, O. A. Efremova, D. Yu. Naumov, W. S. Sheldrick, and V. E. Fedorov, Eur. J. Inorg. Chem., 2003, 2591.Google Scholar
  14. 14.
    V. P. Fedin, I. V. Kalinina, A. V. Virovets, N. V. Podberezskaya, and A. G. Sykes, Chem. Commun., 1998, 233.Google Scholar
  15. 15.
    V. P. Fedin, I. V. Kalinina, D. G. Samsonenko, Yu. V. Mironov, M. N. Sokolov, S. V. Tkachev, A. V. Virovets, N. V. Podberezskaya, and A. G. Sykes, Inorg. Chem., 1999, 38, 1956.CrossRefPubMedGoogle Scholar
  16. 16.
    V. P. Fedin, D. G. Samsonenko, A. V. Virovets, I. V. Kalinina, and D. Yu. Naumov, Izv. Akad. Nauk, Ser. Khim., 2000, 18 [Russ. Chem. Bull., Int. Ed., 2000, 49, 19].Google Scholar
  17. 17.
    M. R. J. Elsegood, A. V. Virovets, D. G. Samsonenko, I. V. Kalinina, and V. P. Fedin, Zh. Strukt. Khim., 2000, 41, 1290 [Russ. J. Struct. Chem., 2000, 41 (Engl. Transl.)].Google Scholar
  18. 18.
    V. P. Fedin, I. V. Kalinina, A. V. Gerasimenko, and A. V. Virovets, Inorg. Chim. Acta, 2002, 331, 48.CrossRefGoogle Scholar
  19. 19.
    V. P. Fedin, I. V. Kalinina, A. V. Virovets, and D. Fenske, Izv. Akad. Nauk, Ser. Khim., 2003, 119 [Russ. Chem. Bull., Int. Ed., 2003, 52, 126].Google Scholar
  20. 20.
    V. P. Fedin, A. V. Virovets, I. V. Kalinina, V. N. Ikorskii, M. R. J. Elsegood, and W. Clegg, Eur. J. Inorg. Chem., 2000, 2341.Google Scholar
  21. 21.
    V. P. Fedin, I. V. Kalinina, A. V. Virovets, and D. Fenske, Izv. Akad. Nauk, Ser. Khim., 2001, 1451 [Russ. Chem. Bull., Int. Ed., 2001, 50, 1525].Google Scholar
  22. 22.
    I. V. Kalinina, D. G. Samsonenko, V. A. Nadolinnyi, J. Lipkowski, and V. P. Fedin, Izv. Akad. Nauk, Ser. Khim., 2004, 86 [Russ. Chem. Bull., Int. Ed., 2004, 53, 86].Google Scholar
  23. 23.
    G. M. Sheldrick, SHELXTL v. 5.1 Software Reference Manual, Bruker AXS Inc., Madison, Wisconsin (USA), 1997.Google Scholar
  24. 24.
    G. M. Sheldrick, SHELX 97. Release 97-2, Gottingen University, Gottingen (Germany), 1998.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  • I. V. Kalinina
    • 1
  • D. G. Samsonenko
    • 1
  • A. V. Gerasimenko
    • 2
  • V. P. Fedin
    • 1
  1. 1.A. V. Nikolaev Institute of Inorganic Chemistry, Siberian BranchRussian Academy of SciencesNovosibirskRussian Federation
  2. 2.Institute of Chemistry of the Far-Eastern BranchRussian Academy of SciencesVladivostokRussian Federation

Personalised recommendations