Russian Journal of Bioorganic Chemistry

, Volume 31, Issue 4, pp 332–343 | Cite as

Photoactivatable Analogues of the Initiating Substrates of RNA Polymerase II Based on Aryl Azide Derivatives of NTP γ-Amidophosphate: Synthesis and Chemical and Photochemical Reactions of Functional Groups

  • D. G. Knorre
  • N. V. Kudryashova
  • T. V. Popova
  • M. M. Shakirov
  • V. S. Mal’shakova
  • O. E. Shpenev
  • L. K. Savinkova
  • M. V. Serebryakova
  • T. S. Godovikova


Photoactivatable derivatives Ar-NH-(CH2)n-NHpppB (where Ar = p-azidophenyl (A1), 5-azido-2-nitrobenzoyl (A2), or 4-azido-2,3,5,6-tetrafluorobenzoyl(A3) group; B = Ado or Guo; n = 2, 3, or 4) were synthesized. The phosphoroamidate bond stability was found to depend on the structure of both the heterocyclic and the photoactivatable groups. The derivative with A3, Ado, and n = 3 is hydrolyzed with regeneration of aryl azide and ATP, whereas the other derivatives are stable in aqueous solutions. The photoanalogues with A1 and A2, B = Ado, and n = 2 or 4 were found to behave as initiating substrates toward the RNA polymerase II from Saccharomyces cerevisiae under the conditions of specific transcription initiation and control of the adenovirus late promoter. The photolysis of N-(4-azidophenyl)-1,4-diaminobutane and N-(5-azido-2-nitrobenzoyl)-1,3-diaminopropane, two functional fragments of the photoaffinity reagents, in aqueous solutions was established to result in the formation of p-benzoquinone diimine and p-nitro-N-arylhydroxylamine derivatives, respectively. The arylhydroxylamine derivatives undergo a number of transformations in aqueous solution leading to nitroso derivatives. We concluded that it is this nitroso derivative (products of nitrene transformation, rather than the nitrenes themselves) that may modify proteins with reagents containing p-nitrophenyl azide fragment.

Key words

aromatic azides nucleoside triphosphate analogues photolysis RNA polymerase II transcription 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Knorre, D.G., Kudryashova, N.V., and Lavrik, O.I., Usp. Khim., 1997, vol. 66, pp. 401–413.Google Scholar
  2. 2.
    Grachev, M.A., Knorre, D.G., and Lavrik, O.I., Usp. Biol. Khim., 1986, vol. 27, pp. 30–73.Google Scholar
  3. 3.
    Sverdlov, E.D. and Tsarev, S.A., Bioorg. Khim., 1980, vol. 6, pp. 1110–1113.Google Scholar
  4. 4.
    Grachev, M.A. and Zaychikov, E.F., FEBS Lett., 1981, vol. 130, pp. 23–26.CrossRefPubMedGoogle Scholar
  5. 5.
    Sverdlov, E.D., Tsarev, S.A., Modyanov, N.N., Lipkin, V.M., Grachev, M.A., Zaichikov, E.F., and Pletnev, A.G., Bioorg. Khim., 1978, vol. 4, pp. 1278–1280.Google Scholar
  6. 6.
    Sverdlov, E.D., Tsarev, S.A., and Kuznetsova, N.F., FEBS Lett., 1980, vol. 112, pp. 296–298.CrossRefPubMedGoogle Scholar
  7. 7.
    Godovikova, T.S., Berezovskii, M.V., and Knorre, D.G., Bioorg. Khim., 1995, vol. 21, pp. 858–867.PubMedGoogle Scholar
  8. 8.
    Knorre, D.G., Bichenkova, E.V., Koval’, V.V., Alekseev, P.V., Knorre, V.D., Nordkhof, E., and Godovikova, T.S., Bioorg. Khim., 1998, vol. 24, pp. 663–669.PubMedGoogle Scholar
  9. 9.
    Gall’, T.S., Gritsan, N.P., Myzina, S.D., Bazhin, N.M., and Nemtseva, E.V., Dokl. Akad. Nauk SSSR, 1983, vol. 273, pp. 883–887.Google Scholar
  10. 10.
    Badashkeeva, A.G., Gall, T.S., Efimova, E.V., Knorre, D.G., Lebedev, A.V., and Mysina, S.D., FEBS Lett., 1983, vol. 155, pp. 263–265.CrossRefGoogle Scholar
  11. 11.
    Kudryashova, N.V., Shamanina, M.Yu., Godovikova, T.S., Anan’ko, E.A., Akhmadieva, F.F., and Romashchenko, A.G., Biokhimiya (Moscow), 1993, vol. 58, pp. 224–233.Google Scholar
  12. 12.
    Godovikova, T.S., Knorre, V.D., Maksakova, G.A., and Sil’nikov, V.N., Bioconjugate Chem., 1996, vol. 7, pp. 343–348.CrossRefGoogle Scholar
  13. 13.
    Staros, J.V., Bayley, H., Standring, D.N., and Knowles, J.R., Biochem. Biophys. Res. Commun., 1978, vol. 80, pp. 568–572.CrossRefPubMedGoogle Scholar
  14. 14.
    Budyka, M.F., Kantor, M.M., and Alfimov, M.V., Usp. Khim., 1992, vol. 61, pp. 48–74.Google Scholar
  15. 15.
    Schuster, G.B. and Platz, M.S., Adv. Photochem., 1992, vol. 17, pp. 69–143.Google Scholar
  16. 16.
    Schnapp, A.K., Poe, R., Leyva, E., Soundararajan, N., and Platz, M.S., Bioconjugate Chem., 1993, vol. 4, pp. 172–177.CrossRefGoogle Scholar
  17. 17.
    Mishenina, G.F., Samukov, V.V., and Shubina, T.N., Bioorg. Khim., 1979, vol. 5, pp. 886–894.Google Scholar
  18. 18.
    Babkina, G.T., Grachev, M.A., Zaichikov, E.F., Knorre, D.G., and Kovrigina, V.S., Izv. Sib. Otd. Akad. Nauk SSSR, no. 7, Ser. Khim., 1975, issue 3, pp. 128–132.Google Scholar
  19. 19.
    Babkina, G.T., Zarytova, V.F., and Knorre, D.G., Bioorg. Khim., 1975, vol. 1, pp. 611–615.Google Scholar
  20. 20.
    Godovikova, T.S., Zarytova, V.F., Lebedev, A.V., Rait, V.K., and Samukov, V.V., Izv. Sib. Otd. Akad. Nauk SSSR, no. 5, Ser. Khim., 1986, issue 2, pp. 110–115.Google Scholar
  21. 21.
    Mishchenko, E.L., Reinbolt, J., Markushin, Yu.Ya., Ehresmann, B., and Godovikova, T.S, J. Photochem. Photobiol., Ser. B: Biol, 1998, vol. 45, pp. 9–18.Google Scholar
  22. 22.
    The Sadtler Standard Infrared Grating Spectra, Philadelphia, 1980.Google Scholar
  23. 23.
    Shabarova, Z.A., Progress in Nucleic Acid Res. & Mol. Biology, 1970, vol. 10, pp. 145–182.Google Scholar
  24. 24.
    Buratowski, S., Cell, 1994, vol. 77, pp. 1–3.CrossRefPubMedGoogle Scholar
  25. 25.
    Parvin, J. and Sharp, P.A., Cell, 1993, vol. 73, pp. 533–540.CrossRefPubMedGoogle Scholar
  26. 26.
    Sayre, M.H., Tschochner, H., and Kornberg, R.D., J. Biol. Chem., 1992, vol. 267, pp. 23 376–23 382.Google Scholar
  27. 27.
    Manly, J., in Transcription and Translation Methods, Hames, B., and Higgins, S., Eds., Oxford, Washington: IRL, 1984. Translated under the title Transkriptsiya i translyatsiya. Metody, Moscow: Mir, 1987, pp. 92–98.Google Scholar
  28. 28.
    Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning: A Laboratory Manualm, Cold Spring Harbor, New York: Cold Spring Harbor Lab. Press, 1989.Google Scholar
  29. 29.
    Sentenac, A., Crit. Rev. Biochem., 1985, vol. 18, pp. 31–91.Google Scholar
  30. 30.
    Knorre, D.G., Kudryashova, N.V., and Lavrik, O.I., Usp. Khim., 1998, vol. 67, pp. 486–502.Google Scholar
  31. 31.
    Knorre, D.G. and Godovikova, T.S., FEBS Lett., 1998, vol. 433, pp. 9–14.CrossRefPubMedGoogle Scholar
  32. 32.
    Meisenheimer, K.M. and Koch, T.H., Crit. Rev. Biochem. Mol. Biol, 1997, vol. 32, pp. 101–140.PubMedGoogle Scholar
  33. 33.
    Rousselot, P., Mappus, E., Blachere, T., de Ravel, M.R., Grenot, C., Tonnelle, C., and Cuilleron, C.Y., Biochemistry, 1997, vol. 36, pp. 7860–7868.CrossRefPubMedGoogle Scholar
  34. 34.
    Gritsan, N.P. and Pritchina, E.A., Usp. Khim., 1992, vol. 61, pp. 910–939.Google Scholar
  35. 35.
    Brinen, J.C. and Singh, B., J. Am. Chem. Soc., 1971, vol. 93, pp. 6623–6626.CrossRefGoogle Scholar
  36. 36.
    Mishchenko, E.L., Kozhanova, L.A., Denisov, A.Yu., Gritsan, N.P., Markushin, Yu.Ya., Serebriakova, M.V., and Godovikova, T.S., J. Photochem. Photobiol., B: Biol., 2000, vol. 54, pp. 16–25.Google Scholar
  37. 37.
    Popova, T.V., Mal’shakova, V.S., Alekseyev, P.V., Kudryashova, N.V., Shakirov, M.M., Savinkova, L.K., Drachkova, I.A., and Godovikova, T.S., Nucleosides, Nucleotides and Nucleic Acids, 2004, vol. 23, pp. 921–925.Google Scholar
  38. 38.
    Nakamoto, K. and Rundle, R.E., J. Am. Chem. Soc., 1956, vol. 78, pp. 1113–1118.CrossRefGoogle Scholar
  39. 39.
    Heyrowsky, M., Vavricka, S., and Exner, O., Collect. Czech. Chem. Commun., 1972, vol. 37, pp. 2858–2863.Google Scholar
  40. 40.
    Saito, K. and Kato, R., Biochem. Biophys. Res. Commun., 1984, vol. 124, pp. 1–5.PubMedGoogle Scholar
  41. 41.
    Greci, L. and Sgarabotto, P., J. Chem. Soc. Perkin. Trans. II, 1984, pp. 1281–1284.Google Scholar
  42. 42.
    Adams, R. and Reifschneider, W., Bull. Soc. Chim. Fr., 1958, pp. 23–65.Google Scholar
  43. 43.
    Knorre, D.G., Alekseyev, P.V., Gerassimova, Yu.V., Sil’nikov, V.N., Maksakova, G.A., and Godovikova, T.S., Nucleosides Nucleotides, 1998, vol. 17, pp. 397–410.Google Scholar
  44. 44.
    Knorre, V.D., Markushin, Yu.Ya., Labusov, V.A., Popov, V.I., Denisov, A.Yu., and Knorre, D.G., Dokl. Ross. Akad. Nauk, 1999, vol. 368, pp. 489–491.Google Scholar
  45. 45.
    Corbett, J.F., J. Chem. Soc. (B), 1969, vol. 3, pp. 213–216.Google Scholar
  46. 46.
    Sadtler Collection of Standard NMR Spectra, Philadelphia, PA, 1980.Google Scholar
  47. 47.
    Corbett, J.F., J. Chem. Soc. (B), 1969, vol. 3, pp. 207–212.Google Scholar
  48. 48.
    Gordon, A.J. and Ford, R.A., A Handbook of Practical Data, Techniques, and References, New York: Wiley, 1972.Google Scholar
  49. 49.
    George, C.P., Lira-DeVito, L.M., Wampler, S.L., and Kadonaga, J.T., Mol. Cell. Biol., 1995, vol. 15, pp. 1049–1059.PubMedGoogle Scholar
  50. 50.
    Calvert, J.G. and Pitts, J.N., in Photochemistry, New York: Wiley, 1966, pp. 780–788.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  • D. G. Knorre
    • 1
  • N. V. Kudryashova
    • 1
  • T. V. Popova
    • 1
  • M. M. Shakirov
    • 2
  • V. S. Mal’shakova
    • 3
  • O. E. Shpenev
    • 3
  • L. K. Savinkova
    • 4
  • M. V. Serebryakova
    • 5
  • T. S. Godovikova
    • 1
  1. 1.Institute of Chemical Biology and Fundamental Medicine, Siberian DivisionRussian Academy of SciencesNovosibirskRussia
  2. 2.Institute of Organic Chemistry, Siberian DivisionRussian Academy of SciencesNovosibirskRussia
  3. 3.Novosibirsk State UniversityNovosibirskRussia
  4. 4.Institute of Cytology and Genetics, Siberian DivisionRussian Academy of SciencesNovosibirskRussia
  5. 5.Shemyakin-Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations