Research on Language and Computation

, Volume 7, Issue 2–4, pp 209–229 | Cite as

Identification of Sentence-to-Sentence Relations Using a Textual Entailer

  • Vasile Rus
  • Philip M. McCarthy
  • Arthur C. Graesser
  • Danielle S. McNamara


We show in this article how an approach developed for the task of recognizing textual entailment relations can be extended to identify paraphrase and elaboration relations. Entailment is a unidirectional relation between two sentences in which one sentence logically infers the other. There seems to be a close relation between entailment and two other sentence-to-sentence relations: elaboration and paraphrase. This close relation is discussed to theoretically justify the newly derived approaches. The proposed approaches use lexical, syntactic, and shallow negation handling. The proposed approaches offer significantly better results than several baselines. When compared to other paraphrase and elaboration approaches they produce similar or better results. We report results on several data sets: the Microsoft Research Paraphrase corpus, a benchmark for evaluating approaches to paraphrase identification, and a data set collected from high-school students’ interactions with an intelligent tutoring system iSTART, which includes both paraphrase and elaboration utterances.


Entailment Paraphrasing Dependencies Intelligent tutoring systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barzilay, R., & McKeown, K. (2001). Extracting paraphrases from a parallel corpus. In 39th annual meeting of the association for computational linguistics, 50–57.Google Scholar
  2. Chapman W. W., Bridewell W., Hanbury P., Cooper G. F., Buchanan B. G. (2001) A simple algorithm for identifying negated findings and diseases in discharge summaries. Journal of Biomedical Informatics 34: 301–310CrossRefGoogle Scholar
  3. Charniak, E. (2000). A maximum-entropy-inspired parser. In Proceedings of North American chapter of association for computational linguistics (NAACL-2000).Google Scholar
  4. Dagan, I., & Glickman, O. (2004). Probabilistic textual entailment: Generic applied modeling of language variability. In Proceedings of learning methods for text understanding and mining.Google Scholar
  5. Dagan, I., Glickman, O., & Magnini, B. (2004–2005). Recognizing textual entailment. In
  6. Dagan, I., Glickman, O., & Magnini, B. (2005). The Pascal recognising textual entailment challenge. In Proceedings of the recognizing textual entaiment challenge workshop.Google Scholar
  7. Dennis, S. (2006). Introducing word order in an LSA framework. In T. Landauer, D. McNamara, S. Dennis & W. Kintsch (Eds.), Handbook of latent semantic analysis. Erlbaum.Google Scholar
  8. Dolan, W. B., Quirk, C., & Brockett, C. (2004). Unsupervised construction of large paraphrase corpora: Exploiting massively parallel news sources. In Proceedings of COLING.Google Scholar
  9. Graesser, A. C., Olney, A., Haynes, B., & Chipman, P. (2005). Cognitive systems: Human cognitive models in systems design. chapter AutoTutor: A cognitive system that simulates a tutor that facilitates learning through mixed-initiative dialogue. Mahwah, NJ: Erlbaum.Google Scholar
  10. Hatch E., Lazaraton A. (1991) The research manual: Design and statistics for applied linguistics. Heinle & Heinle, Boston, MAGoogle Scholar
  11. Ibrahim, A., Katz, B., & Lin, J. (2003). Extracting structural paraphrases from aligned monolingual corpora. In Proceedings of the second international workshop on paraphrasing (ACL 2003).Google Scholar
  12. Iordanskaja, L., Kittredge, R., & Polgere, A.(1991). Natural language generation in artificial intelligence and computational linguistics. Kluwer Academic. Chapter Lexical selection and paraphrase in a meaning-text generation model.Google Scholar
  13. Kintsch W., van Dijk T. A. (1978) Toward a model of text comprehension and production. Psychology Review 85: 363–394CrossRefGoogle Scholar
  14. Kouylekov, M., & Magnini, B. (2005). Recognizing textual entailment with tree edit distance algorithms. In Proceedings of the recognizing textual entaiment challenge workshop.Google Scholar
  15. Kozareva, Z., & Montoyo, A. (2006). Lecture notes in artificial intelligence: Proceedings of the 5th international conference on natural language processing (Fin-TAL 2006). chapter Paraphrase identification on the basis of supervised machine learning techniques.Google Scholar
  16. Landauer T., McNamara D. S., Dennis S., Kintsch W. (2007) Latent semantic analysis: A road to meaning. Erlbaum, Mahwah, NJGoogle Scholar
  17. Leacock, C., & Chodorow, M. (1998). Combining local context and wordnet sense similarity for word sense identification. In WordNet: An electronic lexical database. MIT Press.Google Scholar
  18. Levenshtein V. (1966) Binary codes capable of correcting insertions and reversals. Soviet Physics Doklady 10: 707–717Google Scholar
  19. Lin, D., & Pantel, P. (2001). Dirt—discovery of inference rules from text. In Proceedings of ACM conference on knowledge discovery and data mining (KDD-01), 323–328.Google Scholar
  20. Magerman, D. (1994). Natural language parsing as statistical pattern recognition. Ph.D. Dissertation, Stanford University.Google Scholar
  21. McCarthy P. M., Guess R., McNamara D. S. (2009) The components of paraphrase. Behavior Research Methods 41: 682–690CrossRefGoogle Scholar
  22. McCarthy P.M, Rus V., Crossley S.A., Bigham S.C., Graesser A.C., McNamara D.S. (2007) Assessing entailer with a corpus of natural language. In: Wilson D., Sutcliffe G. (eds) Proceedings of the twentieth international Florida artificial intelligence research society conference. The AAAI Press, Menlo Park California, pp 247–252Google Scholar
  23. McNamara D., Levinstein I. B., Boonthum C. (2004) iStart: Interactive strategy trainer for active reading and thinking. Behavioral Research Methods, Instruments, and Computers 36: 222–233Google Scholar
  24. McNamara, D. S., Boonthum, C., Levinstein, I. B., & Millis, K. (2007). Handbook of latent semantic analysis. chapter Evaluating selfexplanations in iSTART: comparing word-based and LSA algorithms, (pp. 227–241). Mahwah, NJ: ErlbaumGoogle Scholar
  25. Mel’cuk I. (1998) Dependency syntax: Theory and practice. State University of New York Press, Albany, NYGoogle Scholar
  26. Mihalcea, R., Corley, C., & Strapparava, C. (2006). Corpus-based and knowledge-based measures of text semantic similarity. In Proceedings of the American association for artificial intelligence (AAAI 2006).Google Scholar
  27. Miller G. (1995) WordNet: a lexical database for english. Communications of the ACM 38(11): 39–41CrossRefGoogle Scholar
  28. Monz, C., & de Rijke, M. (2001). Light-weight entailment checking for computational semantics. 59–72.Google Scholar
  29. Pazienza, M., Pennacchiotti, M., & Zanzotto, F. (2005). Textual entailment as syntactic graph distance: A rule based and svm based approach. In Proceedings of the recognizing textual entaiment challenge workshop.Google Scholar
  30. Qiu, L., Kan, M., & Chua, T. (2006). Paraphrase recognition via dissimilarity significance classification. In Proceedings of the 2006 conference on empirical methods in natural language processing (EMNLP 2006), (pp. 18–26). Association of Computational Linguistics.Google Scholar
  31. Rus, V., & Desai, K. (2005). Assigning function tags with a simple model. In Proceedings of conference on intelligent text processing and computational linguistics (CICLing) 2005.Google Scholar
  32. Rus, V., Graesser, A. C., & Desai, K. (2005). Lexico-syntactic subsumption for textual entailment, Recent advances in natural language processing (RANLP 2005), Borovets, Bulgaria, September 21–23, 2005.Google Scholar
  33. Rus V., McCarthy P. M., McNamara D. S., Graesser A. C. (2008) A study of textual entailment. International Journal of Artificial Intelligence Tools 17(4): 659–685CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Vasile Rus
    • 1
  • Philip M. McCarthy
    • 2
  • Arthur C. Graesser
    • 3
  • Danielle S. McNamara
    • 3
  1. 1.Department of Computer ScienceThe University of MemphisMemphisUSA
  2. 2.Department of EnglishThe University of MemphisMemphisUSA
  3. 3.Department of PsychologyThe University of MemphisMemphisUSA

Personalised recommendations