Skip to main content

Advertisement

Log in

“What Matters Is Species Richness”—High School Students’ Understanding of the Components of Biodiversity

  • Published:
Research in Science Education Aims and scope Submit manuscript

Abstract

The definition of biodiversity stated by the Convention on Biological Diversity (CBD) in 1992 was conceived as occurring on three different organizational levels: genetic, species, and ecosystems. However, current understanding of biodiversity includes other components, such as the number, abundance, composition, and spatial distribution of species and functional groups. This paper aimed to identify high school students’ frameworks of biodiversity, to assess their conceptual understanding of biodiversity against scientific definitions, and to analyze the influence of sex and school location on students’ understanding of biodiversity. By administering a written questionnaire in which ten different biodiversity scenarios were presented, each consisting of two environments which differed in certain biodiversity components, we asked students (n = 321, 15–18 years old) to choose and argue their preference for biodiversity conservation. Students held a range of frameworks of biodiversity, with some of them being in agreement with scientific conceptualizations (idea of variance as the number of species, functional groups, and trophic relationships). However, students were strongly centered on species richness and undervalued population size, functional characters, species evenness, and alpha diversity. Biodiversity was associated with a notion of balance, by which a proportioned trophic chain prevents species extinction. Overall, students used few components of biodiversity in their argumentations, with no influence of school location or sex. We recommend that teachers fully integrate students’ frameworks with more updated definitions of biodiversity than that of the CBD, conceptualizing its components in order to empower students to decide on current socioscientific issues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Anderson, C. B., & Valenzuela, A. E. (2014). Do what I say, not what I do. Are we linking research and decision-making about invasive species in Patagonia? Ecología Austral, 24, 193–202.

    Google Scholar 

  • Arriassecq, I., & Rivarosa, A. (2014). Science teaching and research in Argentina: the contribution of history and philosophy of science. In M. R. Matthews (Ed.), International handbook of research in history, philosophy and science teaching (pp. 2301–2326). Dordrecht: Springer.

    Google Scholar 

  • Bang, M. (2015). Culture, learning, and development and the natural world: the influences of situative perspectives. Educational Psychologist, 50, 220–233.

    Google Scholar 

  • Barbault, R. (2013). Loss of biodiversity, overview. In S. A. Levin (Ed.), Encyclopedia of biodiversity (2nd ed., pp. 656–666). Amsterdam: Academic.

    Google Scholar 

  • Bermudez, G. M. A., De Longhi, A. L., Díaz, S., & Gavidia, V. C. (2014). La transposición del concepto de diversidad biológica. Un estudio sobre los libros de texto de la educación secundaria española [Didactic transposition of the biodiversity concept. A study of Spanish high-school textbooks]. Enseñanza de las Ciencias, 32, 285–302.

  • Bermudez, G.M.A., & De Longhi, A. L. (2015). Retos para la enseñanza de la biodiversidad hoy. Aportes para la formación docente (Challenges for teaching biodiversity today. Contributions for teacher training). Córdoba: Universidad Nacional de Córdoba. https://doi.org/10.13140/RG.2.1.1742.5369.

  • Bermudez, G. M. A., Díaz, S., & De Longhi, A. L. (2018). Native plant naming by high-school students of different socioeconomic status: implications for botany education. International Journal of Science Education, 40, 46–66.

  • Bourdieu, P. (2000). La dominación masculina (The man domination). Barcelona: Anagrama.

    Google Scholar 

  • Buijs, A. E., Fischer, A., Rink, D., & Young, J. C. (2008). Looking beyond superficial knowledge gaps: understanding public representations of biodiversity. International Journal of Biodiversity Science and Management, 4, 65–80.

    Google Scholar 

  • Cáceres, D. M. (2015). Accumulation by dispossession and socio-environmental conflicts caused by the expansion of agribusiness in Argentina. Journal of Agrarian Change, 15, 116–147.

    Google Scholar 

  • Cáceres, D. M., Silvetti, F., & Díaz, S. (2016). The rocky path from policy-relevant science to policy implementation—a case study from the South American Chaco. Current Opinion in Environmental Sustainability, 19, 57–66.

    Google Scholar 

  • Campos, C. M., Greco, S., Ciarlante, J. J., Balangione, M., Bender, J. B., Nates, J., & Lindemann-Matthies, P. (2012). Students’ familiarity and initial contact with species in the Monte desert (Mendoza, Argentina). Journal of Arid Environments, 82, 98–105.

  • Cardinale, B. J., Duffy, J. E., Gonzalez, A., Hooper, D. U., Perrings, C., Venail, P., ... & Kinzig, A. P. (2012). Biodiversity loss and its impact on humanity. Nature, 486, 59–67.

  • Cervini, R. (2006). Los efectos de la escuela y del aula sobre el logro en matemáticas y en lengua de la educación secundaria: Un modelo multinivel (The effects of school and classroom on achievement in mathematics and language of secondary education: a multilevel model). Perfiles Educativos, 28, 68–97.

    Google Scholar 

  • Cervini, R. A. (2009). Class, school, municipal, and state effects on mathematics achievement in Argentina: a multilevel analysis. School Effectiveness and School Improvement, 20, 319–340.

    Google Scholar 

  • Chapin III, F. S., Matson, P. A., & Mooney, H. D. (2002). Principles of terrestrial ecosystem ecology. New York: Springer.

    Google Scholar 

  • Cobern, W. W., Gibson, A. T., & Underwood, S. A. (1999). Conceptualizations of nature: an interpretive study of 16 ninth graders’ everyday thinking. Journal of Research in Science Teaching, 36, 541–564.

    Google Scholar 

  • Cofré, H., González-Weil, C., Vergara, C., Santibáñez, D., Ahumada, G., Furman, M., Podesta, M. E., Camacho, J., Gallego, R., & Pérez, R. (2015). Science teacher education in South America: the case of Argentina, Colombia and Chile. Journal of Science Teacher Education, 26, 45–63.

    Google Scholar 

  • Conti, G., Kowaljow, E., Baptist, F., Rumpel, C., Cuchietti, A., Harguindeguy, N. P., & Díaz, S. (2016). Altered soil carbon dynamics under different land-use regimes in subtropical seasonally-dry forests of central Argentina. Plant and Soil, 403, 375–387.

    Google Scholar 

  • Convention on Biological Diversity (CBD) (1992). Retrieved from https://www.cbd.int/doc/legal/cbd-en.pdf

  • Crowley, K., Callanan, M. A., Tenenbaum, H. R., & Allen, E. (2001). Parents explain more often to boys than to girls during shared scientific thinking. Psychological Science, 3(12), 258–261.

    Google Scholar 

  • De Bello, F., Lavorel, S., Díaz, S., Harrington, R., Cornelissen, J. H., Bardgett, R. D., et al. (2010). Towards an assessment of multiple ecosystem processes and services via functional traits. Biodiversity and Conservation, 19, 2873–2893.

    Google Scholar 

  • Díaz, S., & Cabido, M. (2001). Vive la difference: plant functional diversity matters to ecosystem processes. Trends in Ecology & Evolution, 16, 646–655.

    Google Scholar 

  • Díaz, S., Fargione, J., Chapin, F. S., & Tilman, D. (2006). Biodiversity loss threatens human well-being. PLoS Biology, 4, e277. https://doi.org/10.1371/journal.pbio.0040277.

    Article  Google Scholar 

  • Díaz, S., Lavorel, S., de Bello, F., Quétier, F., Grigulis, K., & Robson, T. M. (2007). Incorporating plant functional diversity effects in ecosystem service assessments. Proceedings of the National Academy of Sciences, 104, 20684–20689.

    Google Scholar 

  • Díaz, S., Demissew, S., Joly, C., Lonsdale, W. M., & Larigauderie, A. (2015a). A Rosetta Stone for nature’s benefits to people. PLoS Biology, 13(1), e1002040. https://doi.org/10.1371/journal.pbio.1002040.

    Article  Google Scholar 

  • Díaz, S., Demissew, S., Carabias, J., Joly, C., Lonsdale, M., Ash, N., Larigauderie, A., Adhikari, J. R., Arico, S., Báldi, A., Bartuska, A., Baste, I. A., Bilgin, A., Brondizio, E., Chan, K. M. A., Figueroa, V. E., Duraiappah, A., Fischer, M., Hill, R., Koetz, T., Leadley, P., Lyver, P., Mace, G. M., Martin-Lopez, B., Okumura, M., Pacheco, D., Pascual, U., Pérez, E. S., Reyers, B., Roth, E., Saito, O., Scholes, R. J., Sharma, N., Tallis, H., Thaman, R., Watson, R., Yahara, T., Hamid, Z. A., Akosim, C., al-Hafedh, Y., Allahverdiyev, R., Amankwah, E., Asah, S. T., Asfaw, Z., Bartus, G., Brooks, L. A., Caillaux, J., Dalle, G., Darnaedi, D., Driver, A., Erpul, G., Escobar-Eyzaguirre, P., Failler, P., Fouda, A. M. M., Fu, B., Gundimeda, H., Hashimoto, S., Homer, F., Lavorel, S., Lichtenstein, G., Mala, W. A., Mandivenyi, W., Matczak, P., Mbizvo, C., Mehrdadi, M., Metzger, J. P., Mikissa, J. B., Moller, H., Mooney, H. A., Mumby, P., Nagendra, H., Nesshover, C., Oteng-Yeboah, A. A., Pataki, G., Roué, M., Rubis, J., Schultz, M., Smith, P., Sumaila, R., Takeuchi, K., Thomas, S., Verma, M., Yeo-Chang, Y., & Zlatanova, D. (2015b). The IPBES conceptual framework—connecting nature and people. Current Opinion in Environmental Sustainability, 14, 1–16.

    Google Scholar 

  • Dikmenli, M. (2010). Biology student teachers’ conceptual frameworks regarding biodiversity. Education, 130, 479–488.

    Google Scholar 

  • Dor-Haim, S., Amir, R., & Dodick, J. (2011). What do Israeli high school students understand about biodiversity? An evaluation of the high school biology programme, ‘Nature in a World of Change’. Journal of Biological Education, 45, 198–207.

    Google Scholar 

  • Driver, R. (1983). The pupil as scientist? Milton Keynes: Open University Press.

    Google Scholar 

  • Driver, R., & Easley, J. (1978). Pupils and paradigms: a review of literature related to concept development in adolescent science students. Studies in Science Education, 5, 61–84.

    Google Scholar 

  • Driver, R., & Erickson, G. (1983). Theories-in-action: some theoretical and empirical issues in the study of students’ conceptual frameworks in science. Studies in Science Education, 10, 37–60.

    Google Scholar 

  • Eberbach, C., & Crowley, K. (2009). From everyday to scientific observation: how children learn to observe the biologist’s world. Review of Educational Research, 79, 39–68.

    Google Scholar 

  • Eggert, S., & Bögeholz, S. (2010). Students’ use of decision-making strategies with regard to socioscientific issues: an application of the Rasch partial credit model. Science Education, 94, 230–258.

    Google Scholar 

  • Enquist, B. J., Haskell, J., Tiffney, B. H., & Niklas, K. J. (2001). The evolution of plant communities. In S. A. Levin (Ed.), Encyclopedia of biodiversity, 1 (pp. 631–644). San Diego: Academic.

    Google Scholar 

  • Ergazaki, M., & Ampatzidis, G. (2012). Students’ reasoning about the future of disturbed or protected ecosystems & the idea of the ‘balance of nature’. Research in Science Education, 42, 511–530.

    Google Scholar 

  • European Commission (2013). Attitudes toward biodiversity. Flash Eurobarometer 379 - TNS Political & Social. Retrieved from http://ec.europa.eu/commfrontoffice/publicopinion/flash/fl_379_en.pdf.

  • Fiebelkorn, F., & Menzel, S. (2013). Student teachers’ understanding of the terminology, distribution, and loss of biodiversity: perspectives from a biodiversity hotspot and an industrialized country. Research in Science Education, 43, 1593–1615.

    Google Scholar 

  • Fischer, A., & van der Wal, R. (2007). Invasive plant suppresses charismatic seabird—the construction of attitudes towards biodiversity management options. Biological Conservation, 135, 256–267.

    Google Scholar 

  • Fischer, A., & Young, J. C. (2007). Understanding mental constructs of biodiversity: implications for biodiversity management and conservation. Biological Conservation, 136, 271–282.

    Google Scholar 

  • Fischer, A., Langers, F., Bednar-Friedl, B., Geamana, N., & Skogen, K. (2011). Mental representations of animal and plant species in their social contexts: results from a survey across Europe. Journal of Environmental Psychology, 31, 118–128.

    Google Scholar 

  • Fitting, E. (2006). Importing corn, exporting labor: the neoliberal corn regime, GMOs, and the erosion of Mexican biodiversity. Agriculture and Human Values, 23, 15–26.

    Google Scholar 

  • Fonseca, M. J. C. F. (2007). A biodiversidade e o desenvolvimento sustentável nas escolas do ensino médio de Belém (PA), Brasil [Biodiversity and sustainable development in secondary schools of Belém (PA), Brazil]. Educação e Pesquisa, 33, 63–79 Retrieved from http://www.periodicos.usp.br/ep/article/viewFile/28036/29837.

    Google Scholar 

  • Furey, C., Tecco, P. A., Perez-Harguindeguy, N., Giorgis, M. A., & Grossi, M. (2014). The importance of native and exotic plant identity and dominance on decomposition patterns in mountain woodlands of central Argentina. Acta Oecologica, 54, 13–20.

    Google Scholar 

  • Ghilarov, A. (1996). What does ‘biodiversity’ mean—scientific problem or convenient myth? Trends in Ecology & Evolution, 11(7), 304–306.

    Google Scholar 

  • Giorgis, M. A., & Tecco, P. A. (2014). Árboles y arbustos invasores de la Provincia de Córdoba (Argentina): una contribución a la sistematización de bases de datos globales (Invasive trees and shrubs of the Province of Córdoba (Argentina): a contribution to the systematization of global databases). Boletín de la Sociedad Argentina de Botánica, 49, 581–603.

    Google Scholar 

  • Grace, M. (2009). Developing high quality decision-making discussions about biological conservation in a normal classroom setting. International Journal of Science Education, 31, 551–570.

    Google Scholar 

  • Grace, M. M., & Ratcliffe, M. (2002). The science and values that young people draw upon to make decisions about biological conservation issues. International Journal of Science Education, 24, 1157–1169.

    Google Scholar 

  • Grime, J. P. (1998). Benefits of plant diversity to ecosystems: immediate, filter and founder effects. Journal of Ecology, 86, 902–910.

    Google Scholar 

  • Hadzigeorgiou, Y., Prevezanou, B., Kabouropoulou, M., & Konsolas, M. (2011). Teaching about the importance of trees: a study with young children. Environmental Education Research, 17, 519–536.

    Google Scholar 

  • Hamilton, A. J. (2005). Species diversity or biodiversity? Journal of Environmental Management, 75, 89–92.

    Google Scholar 

  • Harper, J. L., & Hawksworth, D. L. (1994). Biodiversity: measurement and estimation. Preface. Philosophical Transactions of the Royal Society B, 345(1311), 5–12.

    Google Scholar 

  • Hellmann, J. J. (2013). Species interactions. In S. A. Levin (Ed.), Encyclopedia of biodiversity (pp. 715–725). Amsterdam: Academic.

    Google Scholar 

  • Hermann, N., & Menzel, S. (2013). Predicting the intention to support the return of wolves: a quantitative study with teenagers. Journal of Environmental Psychology, 36, 153–161.

    Google Scholar 

  • Hillebrand, H., Bennett, D. M., & Cadotte, M. W. (2008). Consequences of dominance: a review of evenness effects on local and regional ecosystem processes. Ecology, 89, 1510–1520.

    Google Scholar 

  • Hooper, D. U., Chapin III, F. S., Ewel, J. J., Hector, A., Inchausti, P., Lavorel, S., Lawton, J. H., Lodge, D. M., Loreau, M., Naeem, S., Schmid, B., Setälä, H., Symstad, A. J., Vandermeer, J., & Wardle, D. A. (2005). Effects of biodiversity on ecosystem functioning. Ecological Monographs, 75, 3–35.

    Google Scholar 

  • Hunter, L. M., & Brehm, J. (2003). Qualitative insight into public knowledge of, and concern with, biodiversity. Human Ecology, 31, 309–320.

    Google Scholar 

  • Kaennel, M. (1998). Biodiversity: a diversity in definition. In P. Bachmann, M. Köhl, & R. Päivinen (Eds.), Assessment of biodiversity for improved forest planning (pp. 71–81). Dordrecht: Kluwer Academic.

    Google Scholar 

  • Kassas, M. (2002). Environmental education: biodiversity. The Environmentalist, 22, 345–351.

    Google Scholar 

  • Keller, E. F. (1995). Refiguring life: metaphors of twentieth-century biology. New York: Columbia University Press.

    Google Scholar 

  • Kilinc, A., Yeşiltaş, N. K., Kartal, T., Demiral, Ü., & Eroğlu, B. (2013). School students’ conceptions about biodiversity loss: definitions, reasons, results and solutions. Research in Science Education, 43, 2277–2307.

    Google Scholar 

  • Lambert, J. L., Lindgren, J., & Bleicher, R. (2012). Assessing elementary science methods students’ understanding about global climate change. International Journal of Science Education, 34, 1167–1187.

    Google Scholar 

  • Lin, C. Y., & Hu, R. (2003). Students’ understanding of energy flow and matter cycling in the context of the food chain, photosynthesis, and respiration. International Journal of Science Education, 25, 1529–1544.

    Google Scholar 

  • Lindemann-Matthies, P., & Bose, E. (2008). How many species are there? Public understanding and awareness of biodiversity in Switzerland. Human Ecology, 36, 731–742.

  • Lindemann-Matthies, P., Constantinou, C., Lehnert, H. J., Nagel, U., Raper, G., & Kadji-Beltran, C. (2011). Confidence and perceived competence of preservice teachers to implement biodiversity education in primary schools - four comparative case studies from Europe. International Journal of Science Education, 33, 2247–2273.

  • Loughland, T., Reid, A., Walker, K., & Petocz, P. (2003). Factors influencing young people’s conceptions of environment. Environmental Education Research, 9, 3–19.

    Google Scholar 

  • Mason, N. W., Mouillot, D., Lee, W. G., & Wilson, J. B. (2005). Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos, 111, 112–118.

    Google Scholar 

  • Menzel, S., & Bögeholz, S. (2009). The loss of biodiversity as a challenge for sustainable development: how do pupils in Chile and Germany perceive resource dilemmas? Research in Science Education, 39, 429–447.

    Google Scholar 

  • Menzel, S., & Bögeholz, S. (2010). Values, beliefs and norms that foster Chilean and German pupils’ commitment to protect biodiversity. International Journal of Environmental & Science Education, 5, 31–49.

    Google Scholar 

  • Millennium Ecosystem Assessment (MEA). (2005). Ecosystems and human well-being. Washington, DC: Island Press.

    Google Scholar 

  • Ministerio de Educación de la Nación. (2005). Núcleos de aprendizajes prioritarios. 2° Ciclo EGB/Nivel Primario (priority learning cores. 2nd cycle EGB / primary level). Buenos Aires: Ministerio de Educación de la Nación.

    Google Scholar 

  • Mueller, M. P. (2009). Educational reflections on the “ecological crisis”: ecojustice, environmentalism, and sustainability. Science & Education, 18, 1031–1056.

    Google Scholar 

  • Mulder, C. P. H., Bazeley-White, E., Dimitrakopoulos, P. G., Hector, A., Scherer-Lorenzen, M., & Schmid, B. (2004). Species evenness and productivity in experimental plant communities. Oikos, 107, 50–63.

    Google Scholar 

  • Nisiforou, O., & Charalambides, A. G. (2012). Assessing undergraduate university students’ level of knowledge, attitudes and behaviour towards biodiversity: a case study in Cyprus. International Journal of Science Education, 34, 1027–1051.

    Google Scholar 

  • Novillo, A., & Ojeda, R. A. (2008). The exotic mammals of Argentina. Biological Invasions, 10, 1333–1344.

    Google Scholar 

  • Palmer, D. H. (1997). Students’ application of the concept of interdependence to the issue of preservation of species: observations on the ability to generalize. Journal of Research in Science Teaching, 34, 837–850.

    Google Scholar 

  • Patrick, P., & Tunnicliffe, S. D. (2011). What plants and animals do early childhood and primary students’ name? Where do they see them? Journal of Science Education and Technology, 20, 630–642.

    Google Scholar 

  • Patton, M. Q. (2014). Qualitative research and evaluation methods. Integrating theory and practice (Fourth ed.). Los Angeles: Sage.

    Google Scholar 

  • Pérez-Mesa, M. R. (2013). Concepciones de biodiversidad: una mirada desde la diversidad cultural [Biodiversity conceptions: a perspective from the cultural diversity]. Magis. Revista Internacional de Investigación en Educación, 6(12), 133–151.

    Google Scholar 

  • Pingali, P., & Smale, M. (2013). Agriculture, industrialized. In S. A. Levin (Ed.), Encyclopedia of biodiversity (pp. 85–94). Amsterdam: Academic.

    Google Scholar 

  • Pointon, P. (2014). ‘The city snuffs out nature’: young people’s conceptions of and relationship with nature. Environmental Education Research, 20, 776–794.

    Google Scholar 

  • Prokop, P., Tuncer, G., & Chudá, J. (2007). Slovakian students’ attitudes toward biology. Eurasia Journal of Mathematics, Science & Technology Education, 3, 287–295.

    Google Scholar 

  • Prokop, P., Prokop, M., & Tunnicliffe, S. D. (2008). Effects of keeping animals as pets on children’s concepts of vertebrates and invertebrates. International Journal of Science Education, 30, 431–449.

    Google Scholar 

  • Ratinen, I., Viiri, J., & Lehesvuori, S. (2013). Primary school student teachers’ understanding of climate change: comparing the results given by concept maps and communication analysis. Research in Science Education, 43, 1801–1823.

    Google Scholar 

  • Schneider, D. C. (2001). Scale, concept and effects of. In S. A. Levin (Ed.), Encyclopedia of biodiversity, 1 (pp. 245–254). San Diego: Academic.

    Google Scholar 

  • Secretariat of the Convention on Biological Diversity (2003). Interlinkages between biological diversity and climate change. Advice on the integration of biodiversity considerations into the implementation of the United Nations Framework Convention on Climate Change and its Kyoto protocol. Montreal, SCBD, 154p. (CBD Technical Series no. 10).

  • Seidler, R., & Bawa, K. S. (2013). Biodiversity in logged and managed forests. In S. A. Levin (Ed.), Encyclopedia of biodiversity (pp. 446–458). Amsterdam: Academic.

    Google Scholar 

  • Siipi, H. (2004). Naturalness in biological conservation. Journal of Agricultural and Environmental Ethics, 17(6), 457–477.

    Google Scholar 

  • Swingland, I. R. (2001). Biodiversity, definition of. In S. A. Levin (Ed.), Encyclopedia of biodiversity, 1 (pp. 377–391). San Diego: Academic.

    Google Scholar 

  • Taber, K. S. (2009). Progressing science education: constructing the scientific research programme into the contingent nature of learning science (Vol. 37). Dordrecht: Springer.

    Google Scholar 

  • Taber, K. S. (2014). Methodological issues in science education research: a perspective from the philosophy of science. In M. R. Matthews (Ed.), International handbook of research in history, philosophy and science teaching (pp. 1839–1893). Dordrecht: Springer.

    Google Scholar 

  • Taber, K. S., Billingsley, B., Riga, F., & Newdick, H. (2011). Secondary students’ responses to perceptions of the relationship between science and religion: stances identified from an interview study. Science Education, 95, 1000–1025.

    Google Scholar 

  • Tenenbaum, H. R., & Leaper, C. (2003). Parent-child conversations about science: the socialization of gender inequities? Developmental Psychology, 39, 34–47.

    Google Scholar 

  • To, C., Tenenbaum, H. R., & Hogh, H. (2017). Secondary school students’ reasoning about evolution. Journal of Research in Science Teaching, 54, 247–273.

    Google Scholar 

  • UNEP/CBD/COP/8/29 (2014). Final report of the twelfth meeting of the Conference of the Parties to the Convention on Biological Diversity. Pyeongchang, Republic of Korea (6–17 October 2014). Retrieved from https://www.cbd.int/doc/meetings/cop/cop-12/official/cop-12-29-en.pdf.

  • UNESCO. (2005). UN decade of education for sustainable development 2005–2014: the DESD at a glance. Paris: UNESCO.

    Google Scholar 

  • United Nations (2015). YouthXchange guidebook series: biodiversity and lifestyles. UNEP Job# DTI/1659/PA. United Nations Environment Programme (UNEP) and United Nations Educational, Scientific and Cultural Organization (UNESCO). Retrieved from: https://www.cbd.int/cepa/doc/youthxchange.pdf.

  • Van Weelie, D., & Wals, A. (2002). Making biodiversity meaningful through environmental education. International Journal of Science Teaching, 24, 1143–1156.

    Google Scholar 

  • Vázquez, D. P., & Simberloff, D. (2003). Changes in interaction biodiversity induced by an introduced ungulate. Ecology Letters, 6, 1077–1083.

    Google Scholar 

  • Vilches, A. M., Legarralde, T. I., Ramírez, S., & Darrigran, G. (2015). Conocimiento y valoración sobre biodiversidad en futuros profesores de biología y geografía (Knowledge and assessment of biodiversity of future biology and geography teachers in Argentina). Revista de Educación en Biología, 18, 46–58.

    Google Scholar 

  • Villarroel, J. D., Antón, A., Zuazagoitia, D., & Nuño, T. (2018). Young children’s understanding of plant life: a study exploring rural–urban differences in their drawings. Journal of Biological Education, 52, 331–341.

    Google Scholar 

  • Wernecke, U., Schwanewedel, J., & Harms, U. (2018). Metaphors describing energy transfer through ecosystems: helpful or misleading? Science Education, 102, 178–194.

    Google Scholar 

  • Wilson, E. O., Peter, F. M. (1988). Biodiversity. Washington, D.C., National Academy Press. https://www.nap.edu/read/989/chapter/1. Accessed 12 April 2018.

  • Wiske, M. S. (Ed.). (1998). Teaching for understanding. Linking research with practice. San Francisco: Jossey Bass.

    Google Scholar 

  • Wiske, M. S., Sick, M., & Wirsig, S. (2001). New technologies to support teaching for understanding. International Journal of Educational Research, 35, 483–501.

    Google Scholar 

  • Youdell, D. (2005). Sex–gender–sexuality: how sex, gender and sexuality constellations are constituted in secondary schools. Gender and Education, 17, 249–270.

    Google Scholar 

  • Zedler, J. B., & Lindig-Cisneros, R. (2013). Restoration of biodiversity, overview. In S. A. Levin (Ed.), Encyclopedia of biodiversity (pp. 453–460). Amsterdam: Academic.

    Google Scholar 

Download references

Acknowledgements

We wish to thank all the students and teachers for their collaboration, Prof. Dr. S. Césere (FCA, UNC) for providing most of the plant figures used in the scenarios, and the anonymous reviewers for valuable comments on an earlier version of this article.

Funding

Special thanks to DAAD (Deutscher Akademischer Austauschdienst / German Academic Exchange Service, Bilateral Exchange Program 50015739, Personal ref. no. 91577964), CONICET (National Scientific and Technical Research Council of Argentina), National University of Córdoba (UNC, SECYT 30720150100024CB), and FONCYT (Agencia Nacional de Promoción Científica y Tecnológica de Argentina, Projects PICT-2011-13799 and PICT-2015-1903) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gonzalo M. A. Bermudez.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 375 kb)

ESM 2

(PDF 233 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bermudez, G.M.A., Lindemann-Matthies, P. “What Matters Is Species Richness”—High School Students’ Understanding of the Components of Biodiversity. Res Sci Educ 50, 2159–2187 (2020). https://doi.org/10.1007/s11165-018-9767-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11165-018-9767-y

Keywords

Navigation