Investigating Image Formation with a Camera Obscura: a Study in Initial Primary Science Teacher Education

  • Granada Muñoz-Franco
  • Ana María Criado
  • Antonio García-Carmona
Article
  • 23 Downloads

Abstract

This article presents the results of a qualitative study aimed at determining the effectiveness of the camera obscura as a didactic tool to understand image formation (i.e., how it is possible to see objects and how their image is formed on the retina, and what the image formed on the retina is like compared to the object observed) in a context of scientific inquiry. The study involved 104 prospective primary teachers (PPTs) who were being trained in science teaching. To assess the effectiveness of this tool, an open questionnaire was applied before (pre-test) and after (post-test) the educational intervention. The data were analyzed by combining methods of inter- and intra-rater analysis. The results showed that more than half of the PPTs advanced in their ideas towards the desirable level of knowledge in relation to the phenomena studied. The conclusion reached is that the camera obscura, used in a context of scientific inquiry, is a useful tool for PPTs to improve their knowledge about image formation and experience in the first person an authentic scientific inquiry during their teacher training.

Keywords

Camera obscura Image formation Inquiry-based learning Primary education Science teacher training 

Notes

Acknowledgements

This work was supported by the Ministry of Economy, Industry and Competitiveness (Spain) under grant EDU2017-82505-P.

References

  1. Abd-El-Khalick, F., Boujaoude, S., Duschl, R., Lederman, N. G., Mamlok-Naaman, R., Hofstein, A., et al. (2004). Inquiry in science education: international perspectives. Science Education, 88(3), 397–419.CrossRefGoogle Scholar
  2. Anderson, B., & Bach, F. (2005). On designing and evaluating teaching sequences taking geometrical optics as an example. Science Education, 89(2), 196–218.CrossRefGoogle Scholar
  3. Andersson, B., & Kärrqvist, C. (1983). How Swedish pupils aged 12–15 years understand light and its properties. European Journal of Science Education, 5(4), 387–402.CrossRefGoogle Scholar
  4. Andrée, M. (2005). Ways of using ‘everyday life’ in the science classroom. In K. Boersma, M. Goedhart, O. de Jong, & H. Eijkelhof (Eds.), Research and the quality of science education. Dordrecht: Springer.Google Scholar
  5. Arnold, J. C., Kremer, K., & Mayer, J. (2014). Understanding students’ experiments—what kind of support do they need in inquiry tasks? International Journal of Science Education, 36(16), 2719–2749.CrossRefGoogle Scholar
  6. Bagno, E., Eylon, B. S., & Levy, S. (2007). Photography as a means of narrowing the gap between physics and students. Physics Education, 42(1), 45–49.CrossRefGoogle Scholar
  7. Banchi, H., & Bell, R. (2008). The many levels of inquiry. Science and Children, 46(2), 26–29.Google Scholar
  8. Bell, T., Urhahne, D., Schanze, S., & Ploetzner, R. (2010). Collaborative inquiry learning: models, tools and challenges. International Journal of Science Education, 32(3), 349–377.CrossRefGoogle Scholar
  9. Bevins, S., & Price, G. (2016). Reconceptualising inquiry in science education. International Journal of Science Education, 38(1), 17–29.CrossRefGoogle Scholar
  10. Bunterm, T., Lee, K., Lan, J. N., Srikoon, S., Vangpoomyai, P., Rattanavongsa, J., & Rachahoon, G. (2014). Do different levels of inquiry lead to different learning outcomes? A comparison between guided and structured inquiry. International Journal of Science Education, 36(12), 1937–1959.CrossRefGoogle Scholar
  11. Campbell, B., & Lubben, F. (2000). Learning science through contexts: helping pupils make sense of everyday situations. International Journal of Science Education, 22(3), 239–252.CrossRefGoogle Scholar
  12. Cañal, P., García-Carmona, A. & Cruz-Guzmán, M. (2016). Didáctica de las Ciencias Experimentales en Educación Primaria. Madrid: Paraninfo.Google Scholar
  13. Cañal, P., Travé, G., & Pozuelos, F. J. (2011). Análisis de obstáculos y dificultades de profesores y estudiantes en la utilización de enfoques de investigación escolar. Investigación en la Escuela, 73, 5–26.Google Scholar
  14. Capps, D. K., & Crawford, B. A. (2013). Inquiry-based professional development: what does it take to support teachers in learning about inquiry and nature of science? International Journal of Science Education, 35(12), 1947–1978.CrossRefGoogle Scholar
  15. Colin, P., Chauvet, F., & Viennot, L. (2002). Reading images in optics: students’ difficulties and teachers’ views. International Journal of Science Education, 24(3), 313–332.CrossRefGoogle Scholar
  16. Cortés, A. L., & Gándara, M. (2006). La construcción de problemas en el laboratorio durante la formación del profesorado: Una experiencia didáctica. Enseñanza de las Ciencias, 25(3), 435–450.Google Scholar
  17. Criado, A. M., Del Cid, R. & García-Carmona, A. (2007). La cámara oscura en la clase de ciencias: fundamento y utilidades didácticas. Revista Eureka sobre Enseñanza y Divulgación de la Ciencia, 4(1), 123–140.Google Scholar
  18. Criado, A.M. & García-Carmona, A. (2014). Science and Maths by inquiring about the image size in a camera obscura. Conference proceeedings: ‘Educating the educators: international approaches to scaling-up profesional development in mathmatics and science education’ (pp. 210-215). Essen: University Duisburg-Essen.Google Scholar
  19. Demir, A., & Abell, S. K. (2010). Views of inquiry: mismatches between views of science education faculty and students of an alternative certification program. Journal of Research in Science Teaching, 47(6), 716–741.CrossRefGoogle Scholar
  20. Driver, R., Guesne, E., & Tiberghien, A. (1985). Children’s ideas in science. Milton Keynes: Open University Press.Google Scholar
  21. Duncan, R. G., & Hmelo-Silver, C. E. (2009). Learning progressions: aligning curriculum, instruction, and assessment. Journal of Research in Science Teaching, 46(6), 606–609.CrossRefGoogle Scholar
  22. Elliot, J. (2000). La investigación-acción en educación. Madrid: Morata.Google Scholar
  23. Feher, E., & Rice, K. (1988). Shadows and anti-images: Children’s conceptions of light and vision. II. Science Education, 72(5), 637–649.CrossRefGoogle Scholar
  24. Galili, I., & Hazan, A. (2000). Learners’ knowledge in optics: interpretation, structure and analysis. International Journal of Science Education, 22(1), 57–88.CrossRefGoogle Scholar
  25. Galili, I., & Kazan, A. (2001). The influence of a historically oriented course on the content knowledge of students in optics. In Research in science education—past, present, and future (pp. 247–252). Dordrecht: Springer.Google Scholar
  26. Galili, I., & Lavrik, V. (1998). Flux concept in learning about light: a critique of the present situation. Science Education, 82(5), 591–613.CrossRefGoogle Scholar
  27. Galili, I., Bendall, S., & Goldberg, F. (1993). The effects of prior knowledge and instruction on understanding image formation. Journal of Research in Science Teaching, 30(3), 271–301.CrossRefGoogle Scholar
  28. García-Barros, S. (2016). Conocimiento científico y conocimiento didáctico. Una tensión permanente en la formación docente. Campo Abierto. Revista de Educación, 35(1), 31–44.Google Scholar
  29. García-Carmona, A. & Acevedo, J. A. (2016). Concepciones de estudiantes de profesorado de Educación Primaria sobre la naturaleza de la ciencia: Una evaluación diagnóstica a partir de reflexiones en equipo. Revista Mexicana de Investigación Educativa, 21(69), 583–610.Google Scholar
  30. García-Carmona, A. & Criado, A. M. (2007). Investigar para aprender, aprender para enseñar. Un proyecto orientado a la difusión del conocimiento escolar sobre ciencia. Alambique: Didáctica de las Ciencias Experimentales, 52, 73–83.Google Scholar
  31. García-Carmona, A., Criado, A. M. & Cruz-Guzmán, M. (2017). Primary pre-service teachers’ skills in planning a guided scientific inquiry. Research in Science Education, 47(5), 989–1010.Google Scholar
  32. García-Carmona, A., Criado, A. M. & Cruz-Guzmán, M. (2018). Prospective primary teachers’ prior experiences, conceptions, and pedagogical valuations of experimental activities in science education. International Journal of Science and Mathematics Education, 16(2), 237–253.Google Scholar
  33. García-Carmona, A. & Cruz-Guzmán, M. (2016). ¿Con qué vivencias, potencialidades y predisposiciones inician los futuros docentes de Educación Primaria su formación en la enseñanza de la ciencia? Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 13(2), 440–458.Google Scholar
  34. Grepstad, J. (2006). Pinhole photography-history, images, cameras, formulas. Retrieved from https://jongrepstad.com/pinhole-photography/pinhole-photography-history-images-cameras-formulas/
  35. Hadenfeldt, J. C., Neumann, K., Bernholt, S., Liu, X., & Parchmann, I. (2016). Students’ progression in understanding the matter concept. Journal of Research in Science Teaching, 53(5), 683–708.CrossRefGoogle Scholar
  36. Harlen, W. (2013). Assessment & inquiry-based science education: issues in policy and practice. Trieste: IAP.Google Scholar
  37. Harlen, W. (2014). Helping children’s development of inquiry skills. Inquiry in Primary Science Education, 1, 5–19.Google Scholar
  38. Hazelkorn, E., Ryan, C., Beernaert, Y., Constantinou, C. P., Deca, L., Grangeat, M. ... Welzel-Breuer, M. (2015). Science education for responsible citizenship. Report to the European Commission of the Expert Group on Science Education.Google Scholar
  39. Heywood, D. S. (2005). Primary trainee teachers’ learning and teaching about light: some pedagogic implications for initial teacher training. International Journal of Science Education, 27(12), 1447–1475.CrossRefGoogle Scholar
  40. Hierrezuelo, J. & Montero, A. (1995) Ciencias de la Naturaleza. 1° ESO. Torre del Mar (Málaga): Elzevir.Google Scholar
  41. Hmelo-Silver, C. E., Duncan, R. G., & Chinn, C. A. (2007). Scaffolding and achievement in problem-based and inquiry learning: a response to Kirschner, Sweller, and Clark (2006). Educational Psychologist, 42(2), 99–107.CrossRefGoogle Scholar
  42. Hodson, D. (2014). Learning science, learning about science, doing science: different goals demand different learning methods. International Journal of Science Education, 36(15), 2534–2553.CrossRefGoogle Scholar
  43. InterAcademy Partnership. (2010). Taking inquiry-based science education into secondary education. A global conference. York: IAP Science Education Program.Google Scholar
  44. Kim, M., & Tan, A. L. (2011). Rethinking difficulties of teaching inquiry-based practical work: stories from elementary pre-service teachers. International Journal of Science Education, 33(4), 465–486.CrossRefGoogle Scholar
  45. Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during instruction does not work: an analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching. Educational Psychologist, 41(2), 75–86.CrossRefGoogle Scholar
  46. Langley, D., Ronen, M., & Eylon, B. S. (1997). Light propagation and visual patterns: preinstruction learners’ conceptions. Journal of Research in Science Teaching, 34(4), 399–424.CrossRefGoogle Scholar
  47. Latorre, A. (2003). La investigación-acción. Conocer y cambiar la práctica educativa. Barcelona: Graó.Google Scholar
  48. Menikheim, M. C., Pesa, M. Colombo, E. & Skop, G. (2003). Ideas sobre visión, color y percepción de alumnos de ingeniería y del profesorado. IV Encontro Nacional de Pesquisa em Educação em Ciencias. Retrieved from http://fep.if.usp.br/~profis/arquivos/ivenpec/Arquivos/Orais/ORAL088.pdf
  49. Meyer, K., & Woodruf, E. (1997). Consensually driven explanation in science teaching. Science Education, 81(2), 173–193.CrossRefGoogle Scholar
  50. Newman, W. J., Abell, S. K., Hubbard, P. D., McDonald, J., Otaala, J., & Martini, M. (2004). Dilemmas of teaching inquiry in elementary science methods. Journal of Science Teacher Education, 15(4), 257–279.CrossRefGoogle Scholar
  51. Next Generation Science Standards [NGSS]. (2013). The Next Generation Science Standards. Washington: National Academy of Sciences.Google Scholar
  52. Osborne, R. & Freyberg, P. (1995) El aprendizaje de las ciencias: influencia de las “ideas previas” de los alumnos. Madrid: Narcea.Google Scholar
  53. Osuna, L., Martínez-Torregrosa, J., Carrascosa, J. & Verdú, R. (2007). Planificando la enseñanza problematizada: el ejemplo de la óptica geométrica en educación secundaria. Enseñanza de las Ciencias, 25(2), 277–295.Google Scholar
  54. Parker, J. (2006). Exploring the impact of varying degrees of cognitive conflict in the generation of both subject and pedagogical knowledge as primary trainee teachers learn about shadow formation. International Journal of Science Education, 28(13), 1545–1577.CrossRefGoogle Scholar
  55. Perales, F. J., & García, J. A. (2016). Por qué, cómo y cuándo enseñar sobre la luz. Alambique: Didáctica de las Ciencias Experimentales, 85, 9–14.Google Scholar
  56. Perales, F. J., & Nievas, F. (1989). Misconceptions on geometric optics and their association with relevant educational variables. International Journal of Science Education, 11(3), 273–286.CrossRefGoogle Scholar
  57. Pesa, M. A., & Cudmani, L. C. (1998). ¿Qué ideas tienen los estudiantes respecto a la visión? Revista Educación y Pedagagía, 10(21), 15–33.Google Scholar
  58. Pesa, M. A., Cudmani, L. C., & Bravo, S. (1996). Formas de razonamiento asociadas a los sistemas preconceptuales sobre naturaleza y propagacion de la luz. Caderno Catarinense de Ensino de Fisica, 12(1), 17–31.Google Scholar
  59. Rice, K., & Feher, E. (1987). Pinholes and images: children’s conceptions of light and vision. I. Science Education, 71(4), 629–639.CrossRefGoogle Scholar
  60. Rivet, A. E., & Krajcik, J. S. (2008). Contextualizing instruction: leveraging students’ prior knowledge and experiences to foster understanding of middle school science. Journal of Research in Science Teaching, 45(1), 79–100.CrossRefGoogle Scholar
  61. Rocard, M., Csermely, P., Jorde, D., Lenzen, D., Walberg, H., & Hemmo, V. (2007). Science education now: a renewed pedagogy for the future of Europe. Brussels: Directorate General for Research, Science, Economy and Society.Google Scholar
  62. Salmerón, L. (2013). Actividades que promueven la transferencia de los aprendizajes: una revisión de la literatura. Revista de Educación, No. Extra., 34–53.Google Scholar
  63. van Zee, E. H., Hammer, D., Bell, M., Roy, P., & Jennifer, P. (2005). Learning and teaching science as inquiry: a case study of elementary school teachers’ investigations of light. Science Education, 89(6), 1007–1042.CrossRefGoogle Scholar
  64. Varma, T., Volkmann, M., & Hanuscin, D. (2009). Preservice elementary teachers’ perceptions of their understanding of inquiry and inquiry-based science pedagogy: Influence of an elementary science education methods course and a science field experience. Journal of Elementary Science Education, 21(4), 1–22.CrossRefGoogle Scholar
  65. Viennot, L., & Kaminski, E. (2006). Can we evaluate a critical detail of teaching practice? The case of a type of diagram in understanding optical imaging. International Journal of Science Education, 28(15), 1867–1885.CrossRefGoogle Scholar
  66. Woodley, E. (2009). Practical work in school science—why is it important? Schools Science Review, 91, 49–51.Google Scholar
  67. Yoon, H. G., Joung, J. J., & Kim, M. (2012). The challenges of science inquiry teaching for pre-service teachers in elementary classrooms: difficulties on and under the scene. Research in Science Education, 42(3), 589–608.CrossRefGoogle Scholar
  68. Zhang, L. (2016). Is inquiry-based science teaching worth the effort? Some thoughts worth considering. Science & Education, 25(7–8), 897–915.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Didáctica de las Ciencias Experimentales y Sociales, Facultad de Ciencias de la EducaciónUniversidad de SevillaSevillaSpain

Personalised recommendations