Skip to main content

Advertisement

Log in

Fostering Students’ Conceptual Knowledge in Biology in the Context of German National Education Standards

  • Published:
Research in Science Education Aims and scope Submit manuscript

Abstract

The German National Education Standards (NES) for biology were introduced in 2005. The content part of the NES emphasizes fostering conceptual knowledge. However, there are hardly any indications of what such an instructional implementation could look like. We introduce a theoretical framework of an instructional approach to foster students’ conceptual knowledge as demanded in the NES (Fostering Conceptual Knowledge) including instructional practices derived from research on single core ideas, general psychological theories, and biology-specific features of instructional quality. First, we aimed to develop a rating manual, which is based on this theoretical framework. Second, we wanted to describe current German biology instruction according to this approach and to quantitatively analyze its effectiveness. And third, we aimed to provide qualitative examples of this approach to triangulate our findings. In a first step, we developed a theoretically devised rating manual to measure Fostering Conceptual Knowledge in videotaped lessons. Data for quantitative analysis included 81 videotaped biology lessons of 28 biology teachers from different German secondary schools. Six hundred forty students completed a questionnaire on their situational interest after each lesson and an achievement test. Results from multilevel modeling showed significant positive effects of Fostering Conceptual Knowledge on students’ achievement and situational interest. For qualitative analysis, we contrasted instruction of four teachers, two with high and two with low student achievement and situational interest using the qualitative method of thematic analysis. Qualitative analysis revealed five main characteristics describing Fostering Conceptual Knowledge. Therefore, implementing Fostering Conceptual Knowledge in biology instruction seems promising. Examples of how to implement Fostering Conceptual Knowledge in instruction are shown and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Australian Curriculum, Assessment and Reporting Authority (2014). F–10 Curriculum: the overarching ideas. Retrieved from http://www.australiancurriculum.edu.au/science/the-overarching-ideas [17.02.2015].

  • Baumert, J., & Kunter, M. (2013). The COACTIV model of teachers’ professional competence. In M. Kunter, J. Baumert, W. Blum, U. Klusmann, S. Krauss, & M. Neubrand (Eds.), Cognitive activation in the mathematics classroom and professional competence of teachers. Results from the COACTIV Project (pp. 25–48). New York: Springer.

    Chapter  Google Scholar 

  • Baumert, J., Bos, W., & Lehmann, R. (Eds.). (2000). TIMSS/III. Dritte Internationale Mathematik- und Naturwissenschaftsstudie. Mathematische und naturwissenschaftliche Bildung am Ende der Schullaufbahn (TIMSS/III. Third international mathematics and science study: mathematical and scientific literacy at the end of school time). Opladen: Leske + Budrich.

  • Baumert, J., Klieme, E., Neubrand, M., Prenzel, M., Schiefele, U., Schneider, W., . . . Weiß, M. (Eds.). (2001). PISA 2000: Basiskompetenzen von Schülerinnen und Schülern im internationalen Vergleich (PISA 2000: students’ basic competencies: an international comparison). Opladen: Leske + Budrich.

    Google Scholar 

  • Baumert, J., Kunter, M., Blum, W., Brunner, M., Voss, T., Jordan, A., . . . Tsai, Y.-M. (2010). Teachers’ mathematical knowledge, cognitive activation in the classroom, and student progress. American Educational Research Journal, 47(1), 133–180.

    Article  Google Scholar 

  • Ben-Zvi Assaraf, O., & Orion, N. (2005). Development of system thinking skills in the context of earth system education. Journal of Research in Science Teaching, 42(5), 518–560. https://doi.org/10.1002/tea.20061.

    Article  Google Scholar 

  • Ben-Zvi Assaraf, O., & Orion, N. (2010a). System thinking skills at the elementary school level. Journal of Research in Science Teaching, 47(5), 540–563. https://doi.org/10.1002/tea.20351.

    Article  Google Scholar 

  • Ben-Zvi-Assaraf, O., & Orion, N. (2010b). Four case studies, six years later: developing system thinking skills in junior high school and sustaining them over time. Journal of Research in Science Teaching, 47(10), 1253–1280. https://doi.org/10.1002/tea.20383.

    Article  Google Scholar 

  • Beyer, I. (2006). Natura: Basiskonzepte [Natura: core ideas]. Stuttgart: Klett.

    Google Scholar 

  • Boerwinkel, D. J., Waarlo, A. J., & Boersma, K. (2009). A designer’s view: the perspective of form and function. Journal of Biological Education, 44(1), 12–18.

    Article  Google Scholar 

  • Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77–101. https://doi.org/10.1191/1478088706qp063oa.

    Article  Google Scholar 

  • Brophy, J. (2000). Teaching. Retrieved from http://www.ibe.unesco.org/publications/ educationalpracticesseriespdf/prac01e.pdf [17.02.2015].

  • Bybee, R. W. (2002). Scientific inquiry, student learning, and the science curriculum. In R. W. Bybee (Ed.), Learning science and the science of learning. Science educators’ essay collection (pp. 25–35). Arlington: NSTA Press.

    Chapter  Google Scholar 

  • Bybee, R. W. & Van Scotter, P. (2007). Reinventing the science curriculum. Educational Leadership, 64(4), 43–47.

  • Chi, M. T. H., & Wylie, R. (2014). The ICAP framework: linking cognitive engagement to active learning outcomes. Educational Psychologist, 49(4), 219–243.

    Article  Google Scholar 

  • Clark, D. B., & Linn, M. C. (2013). The knowledge integration perspective: connections across research and education. In S. Vosniadou (Ed.), International handbook of research on conceptual change (pp. 520–538). New York: Routledge.

    Google Scholar 

  • Cohen, L., Manion, L., & Morrison, K. (2011). Research methods in education. London, New York: Routledge.

    Google Scholar 

  • Conference of the Ministers of Education [KMK] (2004). Einheitliche Prüfungsanforderungen in der Abiturprüfung Biologie (Uniform examination requirements for the school-leaving exam that follows attendance at a gymnasium for the subject biology). Retrieved from http://www.kmk.org/fileadmin/Dateien/veroeffentlichungen_beschluesse/1989/1989_12_01-EPA-Biologie.pdf [26.09.2016].

  • Conference of the Ministers of Education [KMK] (2005). Beschlüsse der Kultusministerkonferenz Bildungsstandards im Fach Biologie für den Mittleren Schulabschluss (Jahrgangsstufe 10) (Resolution of the standing conference of the ministers of education and cultural affairs of the Länder in the Federal Republic of Germany Education Standards for the subject biology (grade 10)). München: Luchterhand.

  • Cortina, J. M. (1993). What is coefficient alpha? An examination of theory and applications. Journal of Applied Psychology, 78(1), 98–104.

    Article  Google Scholar 

  • Craik, F. I. M., & Lockhart, R. S. (1972). Levels of processing: a framework for memory research. Journal of Verbal Learning and Verbal Behavior, 11(6), 671–684. https://doi.org/10.1016/S0022-5371(72)80001-X.

    Article  Google Scholar 

  • Creswell, J. W. (2009). Research design: qualitative, quantitative, and mixed methods approaches. Los Angeles: SAGE.

    Google Scholar 

  • Creswell, J. W. (2012). Educational research: planning, conducting, and evaluating quantitative and qualitative research. Boston: Pearson.

    Google Scholar 

  • de Jong, T., & Fergusson-Hessler, M. G. (1996). Types and qualities of knowledge. Educational Psychologist, 31(2), 105–113.

  • diSessa, A. A., Gillespie, N. M., & Esterly, J. B. (2004). Coherence versus fragmentation in the development of the concept of force. Cognitive Science, 28(6), 843–900. https://doi.org/10.1016/j.cogsci.2004.05.003.

  • Dorfner, T., Förtsch, C., Germ, M., & Neuhaus, B. J. (2018a). Biology instruction using a generic framework of scientific reasoning and argumentation with suggested lessons. Manuscript submitted for publication.

  • Dorfner, T., Förtsch, C., Spangler, M., & Neuhaus, B. J. (2018b). Wie plane ich eine konzeptorientierte Biologiestunde? Ein Planungsmodell für den Biologieunterricht. – Das Schalenmodell –. Der Mathematische Und Naturwissenschaftliche Unterricht, Manuscript accepted for publication.

  • Duit, R. (1995). Zur Rolle der konstruktivistischen Sichtweise in der naturwissenschaftsdidaktikschen Lehr- und Lernforschung (The role of constructivism in teaching and learning research of natural sciences). Zeitschrift für Pädagogik, 41(6), 905–918.

    Google Scholar 

  • Ebby, C. B. (2000). Learning to teach mathematics differently: the interaction between coursework and fieldwork for preservice teachers. Journal of Mathematics Teacher Education, 3, 69–97.

    Article  Google Scholar 

  • Eccles, J., Adler, T. F., Futterman, R., Goff, S. B., Kaczala, C. M., Meece, J. L., & Midgley, C. (1983). Expectancies, values and academic behaviors. In J. T. Spence (Ed.), Achievement and achievement motives (pp. 75–146). San Francisco: Freeman.

    Google Scholar 

  • Förtsch, C., Werner, S., von Kotzebue, L., & Neuhaus, B. J. (2016). Effects of teachers’ professional knowledge on the use of high-complexity instructional tasks and students’ achievement. In ERIDOB (Ed.), Eleventh conference of European researchers in didactics of biology (p. 86). Retrieved from https://www5.kau.se/sites/default/files/Dokument/subpage/2015/01/conference_programme_and_abstracts_for_eridob_2016_13339.pdf.

  • Förtsch, C., Werner, S., Dorfner, T., von Kotzebue, L., & Neuhaus, B. J. (2017a). Effects of cognitive activation in biology lessons on students’ situational interest and achievement. Research in Science Education, 47(3), 559–578. https://doi.org/10.1007/s11165-016-9517-y.

    Article  Google Scholar 

  • Förtsch, C., Werner, S., von Kotzebue, L., & Neuhaus, B. J. (2017b). Effects of high-complexity and high-cognitive-level instructional tasks in biology lessons on students’ factual and conceptual knowledge. Research in Science & Technological Education. Advance online publication. https://doi.org/10.1080/02635143.2017.1394286.

    Article  Google Scholar 

  • Förtsch, C., Heidenfelder, K., Spangler, M., & Neuhaus, B. J. (2018). How does the use of core ideas in biology lessons influence students’ knowledge development?: An intervention study. Zeitschrift Für Didaktik Der Naturwissenschaften. Advance online publication. https://doi.org/10.1007/s40573-018-0071-1.

    Article  Google Scholar 

  • Gehlhaar, K.-H., Klepel, G., & Fankhänel, K. (1999). Analyse der Ontogenese der Interessen an Biologie, insbesondere an Tieren und Pflanzen, an Humanbiologie und Natur- und Umweltschutz (Analysis of the ontogeny of the interests, especially interests in animals and plants, in human biology and environmental protection). In R. Duit & J. Mayer (Eds.), Studien zur naturwissenschaftsdidaktischen Lern- und Interessenforschung (Studies from learning and interest research in science education) (pp. 118–130). Kiel: IPN.

  • Greeno, J. G. (2006). Theoretical and practical advances through research on learning. In J. L. Green, G. Camilli, & P. B. Elmore (Eds.), Handbook of complementary methods in education research (pp. 795–822). Mahwah, N.J: Lawrence Erlbaum Associates; Published for the American Educational Research Association.

  • Hart, L. C. (2001). The story of first-year teachers’ struggle to maintain a reform perspective after experiencing integrated mathematics content and methods in their teacher preparation program. In R. Speiser, C. A. Maher, & C. N. Walter (Eds.), Proceedings of the twenty-third annual meeting, North American Chapter of the International Group for the Psychology of Mathematics Education. October 18–21, 2001, Snowbird, Utah (pp. 699–707). Columbus, OH: ERIC Clearinghouse for Science, Mathematics, and Environmental Education.

  • Heidenfelder, K. (2016). Strukturierung des Biologieunterrichts mit Basiskonzepten in Verbindung mit problemorientierten Kontexten [Teaching based on core ideas and problem-oriented context in biology instruction] (Unpublished doctoral dissertation). München: Ludwig-Maximilians-Universität.

  • Hidi, S. (2006). Interest: a unique motivational variable. Educational Research Review, 1, 69–82.

    Article  Google Scholar 

  • Hmelo-Silver, C. E., & Azevedo, R. (2006). Understanding complex systems: some core challenges. Journal of the Learning Sciences, 15(1), 53–61. https://doi.org/10.1207/s15327809jls1501_7.

    Article  Google Scholar 

  • Hmelo-Silver, C. E., & Pfeffer, M. G. (2004). Comparing expert and novice understanding of a complex system from the perspective of structures, behaviors, and functions. Cognitive Science, 28(1), 127–138. https://doi.org/10.1016/S0364-0213(03)00065-X.

    Article  Google Scholar 

  • Jong, C., Pedulla, J. J., Reagan, E. M., Salomon-Fernandez, Y., & Cochran-Smith, M. (2010). Exploring the link between reformed teaching practices and pupil learning in elementary school mathematics. School Science and Mathematics, 110(6), 309–326. https://doi.org/10.1111/j.1949-8594.2010.00039.x.

    Article  Google Scholar 

  • Jordan, A., Krauss, S., Löwen, K., Blum, W., Neubrand, M., Brunner, M., et al. (2008). Aufgaben im COACTIV-Projekt: Zeugnisse des kognitiven Aktivierungspotentials im deutschen Mathematikunterricht (Tasks in COACTIV: potential to cognitive activate in German mathematics instruction). Journal für Mathematik-Didaktik, 29(2), 83–107.

    Article  Google Scholar 

  • Jüttner, M., Boone, W., Park, S., & Neuhaus, B. J. (2013). Development and use of a test instrument to measure biology teachers’ content knowledge (CK) and pedagogical content knowledge (PCK). Educational Assessment, Evaluation and Accountability, 25(1), 45–67. https://doi.org/10.1007/s11092-013-9157-y.

    Article  Google Scholar 

  • Kampa, N., & Köller, O. (2016). German national proficiency scales in biology: internal structure, relations to general cognitive abilities and verbal skills. Science Education, 100(5), 903–922. https://doi.org/10.1002/sce.21227.

    Article  Google Scholar 

  • Kauertz, A., & Fischer, H. E. (2006). Assessing students’ level of knowledge and analyzing the reasons for learning difficulties in physics by Rasch analysis. In X. Liu & W. J. Boone (Eds.), Applications of Rasch measurement in science education (pp. 212–245). Maple Grove: JAM.

    Google Scholar 

  • Klahr, D., Zimmerman, C., & Jirout, J. (2011). Educational interventions to advance children’s scientific thinking. Science, 333(6045), 971–975. https://doi.org/10.1126/science.1204528.

    Article  Google Scholar 

  • Klauer, K. J. & Leutner, D. (2007). Lehren und Lernen (Teaching and learning). Weinheim: Beltz, PVU.

  • Kleickmann, T. (2012). Kognitiv aktivieren und inhaltlich strukturieren im naturwissenschaftlichen Sachunterricht (Cognitively activating and structuring content in science lessons). Kiel: IPN Universität Kiel.

    Google Scholar 

  • Klieme, E., Schümer, G., & Knoll, S. (2001). Mathematikunterricht in der Sekundarstufe I: „Aufgabenkultur“ und Unterrichtsgestaltung (Mathematics instruction in secondary education: task culture and instructional processes). In Bundesministerium für Bildung und Forschung (Ed.), TIMSS – Impulse für Schule und Unterricht (TIMSS—impetus for school and teaching) (pp. 43–57). Bonn.

  • Krapp, A. (2002). Structural and dynamic aspects of interest development: theoretical considerations from an ontogenetic perspective. Learning and Instruction, 12, 383–409.

    Article  Google Scholar 

  • Krapp, A., & Prenzel, M. (2011). Research on interest in science: Theories, methods, and findings. International Journal of Science Education, 33(1), 27–50. https://doi.org/10.1080/09500693.2010.518645.

    Article  Google Scholar 

  • Kremer, K., Fischer, H. E., Kauertz, A., Mayer, J., Sumfleth, E., & Walpuski, M. (2012). Assessment of standards-based outcomes in science education: perspectives from the German project ESNaS. In S. Bernholt, K. Neumann, & P. Nentwig (Eds.), Making it tangible: learning outcomes in science education (pp. 201–218). Münster: Waxmann.

    Google Scholar 

  • Kunter, M., Klusmann, U., Baumert, J., Richter, D., Voss, T., & Hachfeld, A. (2013). Professional competence of teachers: effects on instructional quality and student development. Journal of Educational Psychology, 105(3), 805–820.

    Article  Google Scholar 

  • Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33(1), 159–174.

    Article  Google Scholar 

  • Linn, M. C. (2006). The knowledge integration perspective on learning and instruction. In R. K. Sawyer (Ed.), The Cambridge handbook of the learning sciences (pp. 243–264). Cambridge: Cambridge University Press.

    Google Scholar 

  • Linn, M. C., & Eylon, B.-S. (2011). Science learning and instruction: Taking advantage of technology to promote knowledge integration. New York: Routledge.

    Book  Google Scholar 

  • Linn, M. C., Lee, H.-S., Tinker, R., Husic, F., & Chiu, J. L. (2006). Teaching and assessing knowledge integration in science. Science, 313, 1049–1050. https://doi.org/10.1126/science.1131408.

    Article  Google Scholar 

  • Lipowsky, F., Rakoczy, K., Pauli, C., Drollinger-Vetter, B., Klieme, E., & Reusser, K. (2009). Quality of geometry instruction and its short-term impact on students’ understanding of the Pythagorean theorem. Learning and Instruction, 19(6), 527–537.

    Article  Google Scholar 

  • Liu, O. L., Lee, H.-S., Hofstetter, C., & Linn, M. C. (2008). Assessing knowledge integration in science: construct, measures, and evidence. Educational Assessment, 13(1), 33–55. https://doi.org/10.1080/10627190801968224.

    Article  Google Scholar 

  • Liu, O. L., Ryoo, K., Linn, M. C., Sato, E., & Svihla, V. (2015). Measuring knowledge integration learning of energy topics: a two-year longitudinal study. International Journal of Science Education, 37(7), 1044–1066. https://doi.org/10.1080/09500693.2015.1016470.

    Article  Google Scholar 

  • Mayer, R. E. (2004). Should there be a three-strikes rule against pure discovery learning? The case for guided methods of instruction. American Psychologist, 59(1), 14–19.

    Article  Google Scholar 

  • Mayer, R. E. (2009). Constructivism as a theory of learning versus constructivism as a prescription for instruction. In S. Tobias & T. M. Duffy (Eds.), Constructivist instruction: success or failure? (pp. 184–200). New York: Routledge.

    Google Scholar 

  • Nachreiner, K., Spangler, M., & Neuhaus, B. J. (2014). Basiskonzepte und problemorientierte Kontexte im Biologieunterricht. In D. Krüger, P. Schmiemann, A. Dittmer, & A. Möller (Eds.), Erkenntnisweg Biologiedidaktik (Vol. 13, pp. 119–132). Berlin: Fachbereichsdruckerei FB Mathematik und Informatik.

  • Nachreiner, K., Spangler, M., & Neuhaus, B. J. (2015). Begründung eines an Basiskonzepten orientierten Unterrichts. Der Mathematische Und Naturwissenschaftliche Unterricht, 68(3), 172–177.

  • National Research Council [NRC] (2012). A framework for K–12 science education: practices, crosscutting concepts, and core ideas. Washington, D.C.: The National Academies Press. Retrieved from www.nap.edu/catalog.php?record_id=13165# [26.09.2016].

  • Neuhaus, B. J., Nachreiner, K., Oberbeil, I., & Spangler, M. (2014). Basiskonzepte zur Planung von Biologieunterricht: Ein Gedankenspiel. Der Mathematische Und Naturwissenschaftliche Unterricht, 67(3), 160–165.

  • Neumann, K., Fischer, H. E., & Sumfleth, E. (2008). Vertikale Vernetzung und kumulatives Lernen im Chemie- und Physikunterricht (Linking and cumulative learning in chemistry and physics education). In E.-M. Lankes (Ed.), Pädagogische Professionalität als Gegenstand empirischer Forschung (Empirical research addressing pedagogical professionalism) (pp. 141–151). Münster: Waxmann.

    Google Scholar 

  • Neumann, K., Fischer, H. E., & Kauertz, A. (2010). From PISA to educational standards: the impact of large-scale assessments on science education in Germany. International Journal of Science and Mathematics Education, 8(3), 545–563.

    Article  Google Scholar 

  • NGSS Lead States (2013). Next generation science standards: for states, by states. Washington, D.C.: The National Academies Press. Retrieved from http://www.nap.edu/catalog/18290/ next-generation-science-standards-for-states-by-states [26.09.2016].

  • Osborne, J., Simon, S., & Collins, S. (2003). Attitudes towards science: a review of the literature and its implications. International Journal of Science Education, 25(9), 1049–1079. https://doi.org/10.1080/0950069032000032199.

    Article  Google Scholar 

  • Özdemir, G., & Clark, D. B. (2007). An overview of conceptual change theories. Eurasia Journal of Mathematics, Science & Technology Education, 3(4), 351–361.

    Article  Google Scholar 

  • Pant, H. A., Stanat, P., Schroeders, U., Roppelt, A., Siegle, T., & Pöhlmann, C. (2013)IQB-Ländervergleich 2012. Mathematische und naturwissenschaftliche Kompetenzen am Ende der Sekundarstufe I (The IQB National Assessment Study 2012. Competencies in mathematics and the sciences at the end of secondary level I Münster: Waxmann.

  • Park, S., Jang, J.-Y., Chen, Y.-C., & Jung, J. (2011). Is pedagogical content knowledge (PCK) necessary for reformed science teaching? Evidence from an empirical study. Research in Science Education, 41(2), 245–260. https://doi.org/10.1007/s11165-009-9163-8.

    Article  Google Scholar 

  • Raudenbush, S. W., Bryk, A. S., Cheong, Y. F., Congdon, R. T., Jr., & du Toit, M. (2011). HLM 7: hierarchical linear and nonlinear modelling [computer software]. Lincolnwood, IL: Scientific Software International.

  • Reinold, P. (2012). Grundwissen und Kompetenzen testen: Zentrale Lernstandserhebung in Natur und Technik. Naturwissenschaften Im Unterricht Chemie, 23(130/131), 80–84.

    Google Scholar 

  • Roehrig, G. H., & Kruse, R. A. (2005). The role of teachers’ beliefs and knowledge in the adoption of a reform-based curriculum. School Science and Mathematics, 105(8), 412–422.

    Article  Google Scholar 

  • Sawada, D., Piburn, M. D., Judson, E., Turley, J., Falconer, K., Benford, R., & Bloom, I. (2002). Measuring reform practices in science and mathematics classrooms: the reformed teaching observation protocol. School Science and Mathematics, 102(6), 245–253. https://doi.org/10.1111/j.1949-8594.2002.tb17883.x.

    Article  Google Scholar 

  • Schiefele, U. (2009). Situational and individual interest. In K. R. Wentzel & A. Wigfield (Eds.), Educational psychology handbook series. Handbook of motivation at school (pp. 197–222). New York: Routledge.

    Google Scholar 

  • Schmiemann, P., Linsner, M., Wenning, S., & Sandmann, A. (2012). Lernen mit biologischen Basiskonzepten (Learning based on biological core ideas). Mathematisch und Naturwissenschaftlicher Unterricht, 65(2), 105–109.

    Google Scholar 

  • Schneider, M., & Hardy, I. (2013). Profiles of inconsistent knowledge in children’s pathways of conceptual change. Developmental Psychology, 49(9), 1639–1649. https://doi.org/10.1037/a0030976.

    Article  Google Scholar 

  • Scott, P., Mortimer, E., & Ametller, J. (2011). Pedagogical link-making: a fundamental aspect of teaching and learning scientific conceptual knowledge. Studies in Science Education, 47(1), 3–36. https://doi.org/10.1080/03057267.2011.549619.

    Article  Google Scholar 

  • Seidel, T., Rimmele, R., & Prenzel, M. (2003). Gelegenheitsstrukturen beim Klassengespräch und ihre Bedeutung für die Lernmotivation (Opportunity structures in classrooms and its influence on motivation). Unterrichtswissenschaft, 31(2), 142–165.

    Google Scholar 

  • Settlage, J., & Southerland, S. A. (2012). Teaching science to every child: using culture as a starting point. New York: Routledge.

    Book  Google Scholar 

  • Stake, R. E. (1995). The art of case study research. Thousand Oaks: SAGE.

    Google Scholar 

  • State Institute for School Quality and Educational Research Munich [ISB] (2017). LehrplanPLUS [CurriculumPLUS] Retrieved from http://www.lehrplanplus.bayern.de/fachprofil/gymnasium/biologie [20.11.2017].

  • Tepner, O., Borowski, A., Dollny, S., Fischer, H. E., Jüttner, M., Kirschner, S., et al. (2012). Modell zur Entwicklung von Testitems zur Erfassung des Professionswissens von Lehrkräften in den Naturwissenschaften (Model for the development of test items measuring science teachers’ professional knowledge). Zeitschrift für Didaktik der Naturwissenschaften, 18, 7–28.

    Google Scholar 

  • Ummels, M. H. J., Kamp, M. J. A., de Kroon, H., & Boersma, K. T. (2014). Designing and evaluating a context-based lesson sequence promoting conceptual coherence in biology. Journal of Biological Education, 49(1), 38–52. https://doi.org/10.1080/00219266.2014.882380.

    Article  Google Scholar 

  • Vogt, H., Upmeier zu Belzen, A., Bonato, M., & Hesse, M. (1999). Einfluß von Biologieunterricht auf die Entwicklung von Interessen und Einstellungen bei Schülern einer sechsten Jahrgangsstufe eines Gymnasiums (Influence of biology instruction on the development of sixth grade secondary school students’ interests and beliefs). In R. Duit & J. Mayer (Eds.), Studien zur naturwissenschaftsdidaktischen Lern- und Interessenforschung (Studies from learning and interest research in science education) (pp. 131–149). Kiel: IPN.

    Google Scholar 

  • von Kotzebue, L., Förtsch, C., Reinold, P., Werner, S., Sczudlek, M., & Neuhaus, B. J. (2015). Quantitative Videostudien zum gymnasialen Biologieunterricht in Deutschland – Aktuelle Tendenzen und Entwicklungen. Zeitschrift Für Didaktik Der Naturwissenschaften, 21(1), 231–237. https://doi.org/10.1007/s40573-015-0033-9.

    Article  Google Scholar 

  • Vosniadou, S. (1994). Capturing and modeling the process of conceptual change. Learning and Instruction, 4(1), 45–69. https://doi.org/10.1016/0959-4752(94)90018-3.

    Article  Google Scholar 

  • Vosniadou, S., Vamvakoussi, X., & Skopeliti, I. (2008). The framework theory approach to the problem of conceptual change. In S. Vosniadou (Ed.), Educational psychology handbook series. International handbook of research on conceptual change (pp. 3–34). New York: Routledge.

    Google Scholar 

  • Vygotsky, L. S. (1978). Mind in society: the development of higher psychological processes. Cambridge: Harvard University Press.

  • Wadouh, J. (2007). Vernetzung und kumulatives Lernen im Biologieunterricht der Gymnasialklasse 9 (Linking and cumulative learning in 9th grade biology instruction) (dissertation). Essen: Universität Duisburg-Essen.

    Google Scholar 

  • Wadouh, J., Liu, N., Sandmann, A., & Neuhaus, B. J. (2014). The effect of knowledge linking levels in biology lessons upon students' knowledge structure. International Journal of Science and Mathematics Education, 12(1), 25–47. https://doi.org/10.1007/s10763-012-9390-8.

    Article  Google Scholar 

  • Waldis, M., Grob, U., Pauli, C., & Reusser, K. (2010). Der Einfluss der Unterrichtsgestaltung auf Fachinteresse und Mathematikleistung (The influence of instruction on interest and mathematics achievment). In K. Reusser, C. Pauli, & M. Waldis (Eds.), Unterrichtsgestaltung und Unterrichtsqualität. Ergebnisse einer internationalen und schweizerischen Videostudie zum Mathematikunterricht (Instruction and instructional quality: results of an international and Swiss video study in mathematics) (pp. 209–251). Waxmann: Münster.

    Google Scholar 

  • Warfield, J., Wood, T., & Lehman, J. D. (2005). Autonomy, beliefs and the learning of elementary mathematics teachers. Teaching and Teacher Education, 21(4), 439–456. https://doi.org/10.1016/j.tate.2005.01.011.

    Article  Google Scholar 

  • Weinstein, C. E., & Mayer, R. E. (1986). The teaching of learning strategies. In M. C. Wittrock (Ed.), Handbook of research on teaching (pp. 315–327). New York: Macmillan Publishing Company.

    Google Scholar 

  • Werner, S., Sczudlek, M., & Neuhaus, B. J. (2013). Eine Videostudie zur Professionalität von Biologielehrkräften (ProwiN). In D. Krüger, P. Schmiemann, A. Möller, A. Dittmer, & J. Zabel (Eds.), Erkenntnisweg Biologiedidaktik (Vol. 12, pp. 59–73). Kassel: Universitätsdruckerei.

  • Werner, S., Förtsch, C., Boone, W., Kotzebue, L. von, & Neuhaus, B. J. (2017). Investigating how German biology teachers use three-dimensional physical models in classroom instruction: A video study. Research in Science Education. Advance online publication. https://doi.org/10.1007/s11165-017-9624-4

    Article  Google Scholar 

  • Wild, E., Gerber, J., Exeler, J., & Remy, K. (2001). Dokumentation der Skalen- und Item-Auswahl für den Kinderfragebogen zur Lernmotivation und zum emotionalen Erleben (Documentation of the scales and items of the questionnaire on motivation and emotional experience). Universität Bielefeld.

  • Wood, W. B. (2008). Teaching concepts versus facts in developmental biology. Cell Biology Education, 7(1), 10–11. https://doi.org/10.1187/cbe.07-12-0106.

    Article  Google Scholar 

  • Yin, R. K. (2014). Case study research: design and methods. Los Angeles: SAGE.

    Google Scholar 

Download references

Funding

This work has been funded by the Deutsche Forschungsgemeinschaft (DFG) under Grant No. NE 1196/6-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Förtsch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Förtsch, C., Dorfner, T., Baumgartner, J. et al. Fostering Students’ Conceptual Knowledge in Biology in the Context of German National Education Standards. Res Sci Educ 50, 739–771 (2020). https://doi.org/10.1007/s11165-018-9709-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11165-018-9709-8

Keywords

Navigation