Skip to main content
Log in

The Development of a Scientific Motive: How Preschool Science and Home Play Reciprocally Contribute to Science Learning

  • Published:
Research in Science Education Aims and scope Submit manuscript

Abstract

There are a growing number of studies that have examined science learning for preschool children. Some research has looked into children’s home experiences and some has focused on transition, practices, routines, and traditions in preschool contexts. However, little attention has been directed to the relationship between children’s learning experiences at preschool and at home, and how this relationship can assist in the development of science concepts relevant to everyday life. In drawing upon Hedegaard’s (Learning and child development, 2002) cultural-historical conception of motives and Vygotsky’s (The collected works of L.S. Vygotsky: problems of general psychology, 1987) theory of everyday and scientific concept formation, the study reported in this paper examines one child, Jimmy (4.2 years), and his learning experiences at home and at preschool. Data gathering featured the video recording of 4 weeks of Jimmy’s learning in play at home and at preschool (38.5 h), parent questionnaire and interviews, and researcher and family gathered video observations of home play with his parents (3.5 h). Findings show how a scientific motive develops through playful everyday learning moments at home and at preschool when scientific play narratives and resources are aligned. The study contributes to a more nuanced understanding of the science learning of young children and a conception of pedagogy that takes into account the reciprocity of home and school contexts for learning science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Appleton, K. (1985). Children’s ideas about temperature. Research in Science Education, 15, 122–126.

    Article  Google Scholar 

  • Chaiklin, S. (2012). A conceptual perspective for investigating motive in cultural-historical theory. In M. Hedegaard, A. Edwards, & M. Fleer (Eds.), Motives in children’s development: cultural-historical approaches (pp. 209–224). Cambridge: Cambridge University Press.

    Google Scholar 

  • Department of Education Employment and Workplace [DEEWR]. (2009). Being, belonging and becoming. Australian Capital Territory.

  • Driver, R. (1983). The pupil as scientist? Buckingham: Open University Press.

    Google Scholar 

  • Duit, R. (2009). Bibliography-STCSE. Students’ and teachers’ conceptions and science education. Retrieved 7–07-10, from http://www.ipn.uni-kiel.de/aktuell/stcse/stcse.html

  • El’konin, D. B. (2005). The subject of our research: the developed form of play. Journal of Russian and East European Psychology, 43(1), 22–48.

    Article  Google Scholar 

  • Fleer, M. (1991). Socially constructed learning in early childhood science education. Research in Science Education, 21, 96–103.

    Article  Google Scholar 

  • Fleer, M. (1995). The importance of conceptually focused teacher-child interaction in early childhood science teaching. International Journal of Science Education, 17(3), 325–342.

    Article  Google Scholar 

  • Fleer, M. (1996). Fusing the boundaries between home and child care to support childrenʼs scientific learning. Research in Science Education, 26(2), 143–154.

    Article  Google Scholar 

  • Fleer, M. (1999). Childrenʼs alternative views: alternative to what? International Journal of Early Years Education, 21(2), 119–136.

    Google Scholar 

  • Fleer, M. (2007). Concept formation: a cultural-historical perspective. In M. Fleer (Ed.), Young children: thinking about the scientific world (pp. 11–14). Australian Capital Territory: Early Chhildhood Australia INC..

    Google Scholar 

  • Fleer, M. (2009a). A cultural-historical perspective on play: play as a leading activity across cultural communities. In Pramling-Samuelsson & M. Fleer (Eds.), Play and learning in early childhood settings: international perspectives (pp. 1–18). Dordrecht: Springer.

    Google Scholar 

  • Fleer, M. (2009b). Understanding the dialectical relations between everyday concepts and scientific concepts within play-based programs. Research in Science Education, 39, 281–306. doi:10.1007/s11165-008-9085-x.

    Article  Google Scholar 

  • Fleer, M. (2010). Early learning and development: cultural-historical concepts in play. Port Melbourne: Cambridge University Press.

    Book  Google Scholar 

  • Fleer, M. (2011). “Conceptual play”: foregrounding imagination and cognition during concept formation in early years education. Contemporary Issues in Early Childhood., 12(3), 224–240.

    Article  Google Scholar 

  • Fleer, M. (2012). The development of motives in children’s play. In M. Hedegaard, A. Edwards, & M. Fleer (Eds.), Motives in children’s development: cultural-historical approaches (pp. 79–96). New York: Cambridge University Press.

    Google Scholar 

  • Fleer, M., & Beasley, W. (1991). A study of conceptual development in early childhood. [journal article]. Research in Science Education, 21(1), 104–112. doi:10.1007/bf02360463.

    Article  Google Scholar 

  • Fleer, M., & Pramling, N. (2015). A cultural-historical study of children learning science: foregrounding affective imagination in play-based setting. Dordrecht: Springer.

    Book  Google Scholar 

  • Fleer, M., & Robbins, J. (2003). “Hit and run research” with “hit and miss” results in early childhood science education. Research in Science Eduation, 33, 405–431.

    Article  Google Scholar 

  • Fleer, M., Gomes, J. J., & March, S. (2014). Science learning affordances in preschool environments. Australasian Journal of Early Childhood, 39(1), 38–48.

    Article  Google Scholar 

  • Galili, I. (1995). Interpretation of students’ understanding of the concept of weightlessness. Research in Science Education, 25(1), 51–74. doi:10.1007/bf02356460.

    Article  Google Scholar 

  • Gunstone, R. F., & White, R. T. (2008). The conceptual change approach and the teaching of science. In S. Vosniadou (Ed.), International handbook of research on conceptual change. New York: Routledge.

    Google Scholar 

  • Hargraves, V. (2014). Children’s theorising about their world: exploring the practitioner’s role. Australian Journal of Early Childhood, 39(1), 30–37.

    Article  Google Scholar 

  • Hedegaard, M. (2002). Learning and child development. Aarhus: Aarhus University Press.

    Google Scholar 

  • Hedegaard, M. (2012). The dynamic aspects in children’s learning and development. In M. Hedegaard, A. Edwards, & M. Fleer (Eds.), Motives in children’s development: cultural-historical approaches (pp. 9–27). New York: Cambridge University Press.

    Google Scholar 

  • Hedegaard, M. & Chaiklin, S. (2005). Radical-Local Teaching and Learning. A Cultural-Historical Approach. Aarhus, Denmark: Aarhus University Press.

  • Hedegaard, M. & Fleer, M. (2008). Studying children: A cultural-historical approach. Berkshire: Open University Press.

  • Merriam, S. B. (2009). Qualitative research: a gude to research and implementation. San Francisco: Jossey-Bass.

    Google Scholar 

  • Milner, A. R., Templin, M. A., & Czerniak, C. M. (2011). Elementary science students’ motivation and learning strategy use: constructivist classroom. Journal of Science Teacher Education, 22(2), 151–170.

    Article  Google Scholar 

  • O’Loughlin, M. (1992). Rethinking science education: beyond Piagetian constructivism toward a sociocultural model of teaching and learning. Journal of Research in Science Teaching, 29(8), 791–820.

    Article  Google Scholar 

  • Osborne, R., & Freyberg, P. (1985). Learning in science. Auckland: Heinemann Education.

    Google Scholar 

  • Silfverberg, H. (2006). The disappearence of light: explanations given by the primary school pupils. NorDiNA-Nordic Studies in Science Education, 5, 43–53.

    Google Scholar 

  • Siry, C., & Kremer, I. (2011). Children explain the rainbow: using young childrenʼs ideas to guide science curricula. Journal of Science Education and Technology, 20, 643–655. doi:10.1007/s10956-011-9320-5.

    Article  Google Scholar 

  • Tsai, C. H., Chen, H. Y., Chou, C. Y., & Lain, K. D. (2007). Current as the key concept of Taiwanese students’ understandings of electric circuits. International Journal of Science Education, 29(4), 483–496. doi:10.1080/09500690601073327.

    Article  Google Scholar 

  • Tytler, R., & Osborne, J. (2012). Student attitudes and aspirations towards science. In B. J. Fraser, K. Tobin, & C. J. McRobbie (Eds.), Second international handbook of science education (pp. 597–625). New York: Springer.

  • Vygotsky, L. S. (1966). Play and its role in the mental development of the child. Voprosy psikhologi, 12(6), 62–78.

    Google Scholar 

  • Vygotsky, L. S. (1987). The development of scientific concepts in childhood (N. Minick, Trans.) In R. W. Rieber & A. S. Carton (Eds.), The collected works of L.S. Vygotsky: problems of general psychology (pp. 167–242). New York: Plenum Press.

    Google Scholar 

  • Watters, J. J., & Ginns, I. S. (2000). Developing motivation to teach elementary science: effect of collaborative and authentic learning practices in preservice education. Journal of Science Teacher Education, 11(4), 301–321.

    Article  Google Scholar 

  • Yen, H.-C., Tuan, H.-L., & Liao, C.-H. (2011). Investigating the influence of motivation on students’ conceptual learning outcomes in web-based vs. classroom-based science teaching contexts. Research in Science Education, 41, 211–224. doi:10.1007/s11165-009-9161-x.

    Article  Google Scholar 

Download references

Acknowledgements

This paper was presented at the 2014 ASERA conference, Melbourne. Special thanks to the research participants of this study. A very special thank to the cultural-historical research community at Monash University for the constructive feedback in the presentation of this manuscript. The first author is a PhD student at Faculty of Education, Monash University and recipient of the Australian Postgraduate Award (APA) and the Monash Graduate Scholarship (MGS). The first author won the ASG (Australian Scholarships Group) 2016 travel grant for nominating this paper. Her study was situated in the broader context of an Australian Research Council Discovery Grant scheme (grant number DP130101438) project lead by the second author. The participants were drawn separately from the broader project for the purpose of researching the problem addressed in this paper. A special acknowledgement to field leader Sue March for overall project management. Research assistance was provided by Feiyan Chen, Yijun Hao, Hasnat Jahan, Mahbub Sarkar, Shuhuan Pang, Shukla Sikder, and Pui Ling Wong. Support from Madeleine Holland and Rowan Fleer-Stout with data organisation is appreciated for the broader project. Special acknowledgment of the staff and families involved in the study is made, as without their involvement new understandings would not be possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith Gomes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomes, J., Fleer, M. The Development of a Scientific Motive: How Preschool Science and Home Play Reciprocally Contribute to Science Learning. Res Sci Educ 49, 613–634 (2019). https://doi.org/10.1007/s11165-017-9631-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11165-017-9631-5

Keywords

Navigation