Research in Science Education

, Volume 42, Issue 3, pp 401–414 | Cite as

Does Classroom Explicitation of Initial Conceptions Favour Conceptual Change or is it Counter-Productive?

  • Patrice Potvin
  • Julien Mercier
  • Patrick Charland
  • Martin Riopel


This research investigates the effect of classroom explicitation of initial conceptions (CEIC) on conceptual change in the context of learning electricity. Eight hundred and seventy five thirteen year-olds were tested in laboratory conditions to see if CEIC is or is not a productive step toward conceptual change. All students experienced a problem-based pedagogical treatment called “the electronic challenge.” The randomly determined experimental group was also exposed to CEIC. Data shows a significant beneficial effect of CEIC and no unwanted “contamination effect”, particularly for female subjects.


Science education Conceptual change Classroom explicitation Gender Socioconstructivism Problem-based learning 



Special thanks to undergraduate students involved in this research, Maude Bouchard-Fortier, Éric Durocher, Guillaume Cyr, Jean-Mathieu Lavoie-Lebeau, Jean-Sébastien Renaud and Amélie Perron-Singh, to the Centre des Sciences de Montréal, and also to Geneviève Messier, who worked on the literature review. This research was possible by a grant from the Fonds québécois de recherche sur la société et la culture (FQRSC).


  1. Adey, P. (1992). The CASE results: implications for science teaching. International Journal of Science Education, 14(2), 137–146.CrossRefGoogle Scholar
  2. Anderson, C. W. (2007). Perspectives on science learning. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp. 3–30). Mahwah: Lawrence Erlbaum Associates.Google Scholar
  3. Baser, M. (2006). Fostering conceptual change by cognitive conflict based instruction on students’ understanding of heat ant temperature concepts. Eurasia Journal of Mathematics, Science and Technology Education, 2(2), 96–114.Google Scholar
  4. Çetin, P. S., Kaya, E., & Geban, Ö. (2009). Facilitating conceptual change in gases concepts. Journal of Science Education and Technology, 18(2), 130–137.CrossRefGoogle Scholar
  5. Chan, C., Burtis, J., & Bereiter, C. (1997). Knowledge building as a mediator of conflict in conceptual change. Cognition and Instruction, 15(1), 1–40.CrossRefGoogle Scholar
  6. Chinn, C. A., & Brewer, W. F. (1993). The role of anomalous data in knowledge acquisition: a theoretical framework and implications for science instruction. Review of Educational Research, 63(1), 1–49.Google Scholar
  7. Coştu, B., Ayas, A., Niaz, M., Ünal, S., & Çalik, U. (2007). Facilitating conceptual change in students’ understanding of boiling concept. Journal of Science Education and Technology, 16(6), 524–536.CrossRefGoogle Scholar
  8. DiSessa, A. A. (1993). Toward an epistemology of physics. Cognition and Instruction, 10, 105–225.CrossRefGoogle Scholar
  9. DiSessa, A. A. (2006). A history of conceptual change research. In K. Sawyer (Ed.), Cambridge handbook of the learning sciences. Cambridge: Cambridge University Press.Google Scholar
  10. Dreyfus, A., Jungwirth, E., & Eliovitch, R. (1990). Applying the “cognitive conflict” strategy for conceptual change—some applications, difficulties and problems. Science Education, 74(5), 555–569.CrossRefGoogle Scholar
  11. Duit, R., & Treagust, D. (2003). Conceptual change—A powerful framework for improving science teaching and learning. International Journal of Science Education, 25(6), 671–688.CrossRefGoogle Scholar
  12. Ebenezer, J., Chacko, S., Nafiz, O., Kiran, S., & Ebenezer, L. (2009). The effects of common knowledge construction model sequence of lessons on science achievement and relational conceptual change. Journal of Research in Science Teaching, 27(1), 25–46.Google Scholar
  13. Eryilmaz, A. (2002). Effects of conceptual change discussions on student’s misconceptions and achievement regarding force and motion. Journal of Research in Science Teaching, 39(10), 1001–1015.CrossRefGoogle Scholar
  14. Ferrari, M., & Elik, N. (2003). Influences on intentional conceptual change. In G. M. Sinatra & P. R. Pintrich (Eds.), Intentional conceptual change (pp. 21–54). Mahwah: Lawrence Erlbaum Associates.Google Scholar
  15. Gigerenzer, G., & Todd, P. M. (1999). Simple heuristics that make us smart. New York: Oxford University Press.Google Scholar
  16. Hand, B., & Treagust, D. (1991). Student achievement and science curriculum development using a constructive framework. School, Science and Mathematics, 91(4), 172–176.CrossRefGoogle Scholar
  17. Harlen, W. (1999). Effective teaching of science: A review of research. Edinburg: The Scottish Council of Research in Education.Google Scholar
  18. Hatano, G., & Inagaki, K. (2003). When is conceptual change intended ? A cognitive sociocultural view. In G. M. Sinatra & P. R. Pintrich (Eds.), Intentional conceptual change (pp. 407–425). Mahwah: Lawrence Erlbaum Associates.Google Scholar
  19. Hewson, P. W. (1981). A conceptual change approach to learning science. European journal of science education, 3(4), 383–396.CrossRefGoogle Scholar
  20. Hewson, P. W., Beeth, M. E., & Thorley, R. N. (2003). Teaching for conceptual change. In B. J. Fraser & K. G. Tobin (Eds.), International handbook of science education (pp. 199–218). Dordrecht: Kluwer Academic Publishers.Google Scholar
  21. Hynd, C. R., et al. (1994). The role of instructional variables in conceptual change in high school physics topics. Journal of Research in Science Teaching, 31(9), 933–946.CrossRefGoogle Scholar
  22. Joshua, S., & Dupin, J.-J. (1993). Introduction à la didactique des sciences et des mathématiques. Paris: Presses universitaires de France.Google Scholar
  23. Kuhn, T. S. (1962). La structure des révolutions scientifiques. Paris: Champs-Flammarion.Google Scholar
  24. Limon, M. (2001). On the cognitive conflict as an instructional strategy for conceptual change: a critical appraisal. Learning and instruction, 11, 357–380.CrossRefGoogle Scholar
  25. Macbeth, D. (2000). On an actual apparatus for conceptual change. Science Education, 84(2), 228–264.CrossRefGoogle Scholar
  26. Mbajiorgu, N. M., Ezechi, N. G., & Idoko, E. C. (2007). Addressing nonscientific presuppositions in genetics using a conceptual change strategy. Science Education, 91, 419–438.CrossRefGoogle Scholar
  27. Nussbaum, J., & Novick, S. (1982). Alternative frameworks, conceptual conflict and accommodation: toward a principled teaching strategy. Instructional Science, 11, 183–200.CrossRefGoogle Scholar
  28. Nussbaum, J., & Sharoni-Dagan, N. (1983). Changes in second grade children’s preconceptions about the earth as a cosmic body. Science Education, 67(1), 99–114.CrossRefGoogle Scholar
  29. Piaget, J. (1964). Development and learning. Journal of Research in Science Teaching, 11(4), 176–185.CrossRefGoogle Scholar
  30. Posner, G. J., Strike, K., Hewson, P. W., & Gertzog, W. A. (1982). Accomodation of a scientific conception: toward a theory of conceptual change. Science Education, 66(2), 211–227.CrossRefGoogle Scholar
  31. Potvin, P. (2010). Regard épistémique sur une évolution conceptuelle en physique : une recherche qualitative qui s’intéresse à l’intuition en sciences: Éditions Universitaires Européennes (EUE).Google Scholar
  32. Potvin, P., Riopel, M., Charland, P., & Mercier, J. (in press). Portrait des différences entre les genres dans le contexte de l’apprentissage de l’électricité en fonction de la certitude exprimée lors de la production de réponses. Canadian Journal of Science Mathematics and Technology Education.Google Scholar
  33. Potvin, P., Riopel, M., Masson, S., & Fournier, F. (2010). Problem-centered learning vs. teaching-centered learning in science at the secondary level: An analysis of the dynamics of doubt. Journal of Applied Research on Learning, 3, Article, 5, 1–24.Google Scholar
  34. Psaltis, C., & Duveen, G. (2006). Social relations and cognitive development: the influence of conversation type and representations of gender. European Journal of Social Psychology, 36, 407–430.CrossRefGoogle Scholar
  35. Rowell, J. A., & Dawson, C. J. (1983). Laboratory counterexamples and the growth of understanding of science. European Journal of Science Education, 5(2), 203–215.CrossRefGoogle Scholar
  36. SAS Institute. (2001). SAS (Release 8.02) [Computer program]: Cary, NC.Google Scholar
  37. Shipstone, D. M. (1984). A study of children’s understanding of electricity in simple DC circuits. European journal of science education, 6, 185–198.CrossRefGoogle Scholar
  38. Shtulman, A. (2009). Thinking the role of resubsumption in conceptual change. Educational Psychologist, 44(1), 41–47.CrossRefGoogle Scholar
  39. Sinatra, G. M., & Pintrich, P. R. (2003a). Intentional conceptual change. Mahwah: Lawrence Erlbaum Associates.Google Scholar
  40. Sinatra, G. M., & Pintrich, P. R. (2003b). The role of intentions in conceptual change learning. In G. M. Sinatra & P. R. Pintrich (Eds.), Intentional conceptual change (pp. 1–18). Mahwah: Lawrence Erlbaum Associates.Google Scholar
  41. Thouin, M. (2008). Tester et enrichir sa culture scientifique et technologique. Québec: Multimondes.Google Scholar
  42. Tillema, H. H., & Knol, W. E. (1997). Promoting student teacher through conceptual change or conceptual instruction. Teaching and Teacher Education, 13(6), 579–595.CrossRefGoogle Scholar
  43. Toppino, T. C., & Luipersbeck, S. M. (1993). Generality of the negative suggestion effect in objective tests. The Journal of Educational Research, 86(6), 357–362.CrossRefGoogle Scholar
  44. von Aufschnaiter, C. (2010). Misconceptions or missing conceptions? Eurasia. Journal of Mathematics Science and Technology Education, 6(1), 3–18.Google Scholar
  45. Vosniadou, S. (2008). Conceptual change research: an introduction. In S. Vosniadou (Ed.), International handbook of research on conceptual change (pp. xiii–xxviii). New York: Routledge.Google Scholar
  46. Wandersee, J. H., Mintzes, J. J., & Novak, J. D. (1994). Research on alternative conceptions in science. In D. Gabel (Ed.), Handbook of research on science teaching and learning (pp. 177–210). NewYork: Macmillan.Google Scholar
  47. Whitehouse, W. G., Orne, E. C., & Dinges, D. F. (2008). Eyewitness memory: can suggestion be minimized in the investigative interview? The forensic investigator (winter), 66–75.Google Scholar
  48. Yenilmez, A., & Tekkaya, C. (2006). Enhancing students’ understanding of photosynthesis and respiration in plant through conceptual change approach. Journal of Science Education and Technology, 15(1), 81–87.CrossRefGoogle Scholar

Further Reading

  1. Driver, R. (1983). The pupil as scientist? Milton Keynes: The Open University Press.Google Scholar
  2. Driver, R., Guesne, E., & Thibergien, A. (1985). Children’s Ideas in Science. Milton Keynes: The Open University Press.Google Scholar
  3. Festinger, L. (1957). A theory of cognitive dissonance. Stanford: Stanford University Press.Google Scholar
  4. Hewson, P. W., & Hewson, M. G. (1984). The role of conceptual conflict in conceptual change and the design of science instruction. Instructional Science, 13(1), 1–13.CrossRefGoogle Scholar
  5. Mintzes, J. J., Trowbridge, J. E., Arnaudin, M. W., & Wandersee, J. A. (1991). The psychology of learning science. In S. M. Glynn, R. H. Yeany, & B. K. Britton (Eds.), Studies on conceptual development in the life sciences (pp. 179–202). Hillsdale: Lawrence Erlbaum Associates.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Patrice Potvin
    • 1
  • Julien Mercier
    • 2
  • Patrick Charland
    • 1
  • Martin Riopel
    • 1
  1. 1.Département d’éducation et pédagogieUniversité du Québec à Montréal (UQÀM)MontréalCanada
  2. 2.Département d’éducation et formation spécialiséeUniversité du Québec à Montréal (UQÀM)MontréalCanada

Personalised recommendations