Green synthesis of Fe3O4 nanoparticles for hyperthermia, magnetic resonance imaging and 5-fluorouracil carrier in potential colorectal cancer treatment

Abstract

Magnetite nanoparticles (Fe3O4 NPs) have received considerable attention in various biomedical applications due to their fascinating properties and multiple functionalities. In this multidisciplinary study, Fe3O4 NPs were produced by an inexpensive co-precipitation technique and using four different weight percentages of Punica granatum fruit peel extract as a green stabilizer. From the image of transmission electron microscopy, the NPs showed spherical shapes with an average size of 14.38 nm. Results of UV–VIS spectroscopy and bandgap indicated successful preparation of the Fe3O4 NPs stabilized with the extract. Adding the stabilizer concentration improved the particle zeta potential from −29.24 to −35.62 mV. Thermoresponsive performance of the Fe3O4 nanofluids with the green extract could render a remarkable heating capability under the hyperthermia condition. Magnetic resonance imaging (MRI) analysis presented that the samples possessed acceptable MRI signals. An anticancer drug 5-fluorouracil was successfully loaded onto the Fe3O4 NPs containing 2 weight percentage of the extract, which indicated a maximum release of 79% in a media with pH 7.4. In cytotoxicity assays, the drug-loaded Fe3O4 NPs at 15.62 and 31.25 µg.ml−1 concentration eliminated 29% and 35% of HCT116 colorectal cancer cells, respectively. This study, therefore, introduced that the green-synthesized Fe3O4 NPs can be a promising candidate for magnetic hyperthermia therapy, MRI nanoagents and drug delivery in colorectal cancer.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    L.H. Reddy, J.L. Arias, J. Nicolas, P. Couvreur, Chem. Rev. 112, 5818–5878 (2012). https://doi.org/10.1021/cr300068p

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Z. Hedayatnasab, A. Dabbagh, F. Abnisa, W.M.A.W. Daud, Eur. Polym. J. 133, 109789 (2020). https://doi.org/10.1016/j.eurpolymj.2020.109789

    CAS  Article  Google Scholar 

  3. 3.

    L.S. Arias, J.P. Pessan, A.P.M. Vieira, T.M.T.d. Lima, A.C.B. Delbem, D.R. Monteiro, Antibiotics 7, 46 (2018) . https://doi.org/10.3390/antibiotics7020046

  4. 4.

    Y.P. Yew, K. Shameli, M. Miyake, N.B.B.A. Khairudin, S.E.B. Mohamad, T. Naiki, K.X. Lee, Arab. J. Chem. 13, 2287–2308 (2020). https://doi.org/10.1016/j.arabjc.2018.04.013

    CAS  Article  Google Scholar 

  5. 5.

    H. Jahangirian, S. Azizi, R. Rafiee-Moghaddam, B. Baratvand, T.J. Webster, Biomolecules 9, 619 (2019). https://doi.org/10.3390/biom9100619

    CAS  Article  PubMed Central  Google Scholar 

  6. 6.

    M. Magro, F. Vianello, Nanomaterials 9, 1608 (2019). https://doi.org/10.3390/nano9111608

    CAS  Article  PubMed Central  Google Scholar 

  7. 7.

    Z. Izadiyan, K. Shameli, M. Miyake, S.-Y. Teow, S.-C. Peh, S.E. Mohamad, S.H.M. Taib, Mater. Sci. Eng. C 96, 51–57 (2019). https://doi.org/10.1016/j.msec.2018.11.008

    CAS  Article  Google Scholar 

  8. 8.

    M. Kalhor, Z. Zarnegar, F. Janghorban, S.A. Mirshokraei, Res. Chem. Intermed. 46, 821–836 (2020). https://doi.org/10.1007/s11164-019-03992-0

    CAS  Article  Google Scholar 

  9. 9.

    M. Herlekar, S. Barve, R. Kumar, J. Nanomater. 2014, (2014). https://doi.org/10.1155/2014/140614

  10. 10.

    M. Kallumadil, M. Tada, T. Nakagawa, M. Abe, P. Southern, Q.A. Pankhurst, J. Magn. Magn. Mater. 321, 1509–1513 (2009). https://doi.org/10.1016/j.jmmm.2009.02.075

    CAS  Article  Google Scholar 

  11. 11.

    A.B. Ogholbeyg, A. Kianvash, A. Hajalilou, E. Abouzari-Lotf, A. Zarebkohan, J. Mater. Sci. Mater. Electron. 29, 12135–12143 (2018). https://doi.org/10.1007/s10854-018-9321-8

    CAS  Article  Google Scholar 

  12. 12.

    D. Tungmunnithum, A. Thongboonyou, A. Pholboon, A. Yangsabai, Medicines. 5, 93 (2018). https://doi.org/10.3390/medicines5030093

  13. 13.

    P. Pan-In, S. Wanichwecharungruang, J. Hanes, A.J. Kim, Int. J. Nanomedicine 9, 3677 (2014). https://doi.org/10.2147/IJN.S66511

  14. 14.

    W. Suttirak, S. Manurakchinakorn, J. Food Sci. Technol. 51, 3546–3558 (2014). https://doi.org/10.1007/s13197-012-0887-5

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    M. Yusefi, K. Shameli, R.R. Ali, S.-W. Pang, S.-Y. Teow, J. Mol. Struct. 1204, 127539 (2020). https://doi.org/10.1016/j.molstruc.2019.127539

    CAS  Article  Google Scholar 

  16. 16.

    S. El-Faham, M. Mohsen, A. Sharaf, A. Zaky, Curr. Sci. Int. 5, 529–542 (2016)

    Google Scholar 

  17. 17.

    S. Groiss, R. Selvaraj, T. Varadavenkatesan, R. Vinayagam, J. Mol. Struct. 1128, 572–578 (2017). https://doi.org/10.1016/j.molstruc.2016.09.031

    CAS  Article  Google Scholar 

  18. 18.

    P. Boyle, B. Levin, World Cancer Report 2008 (IARC Press, International Agency for Research on Cancer, 2008).

    Google Scholar 

  19. 19.

    M. Mühlberger, C. Janko, H. Unterweger, E. Schreiber, J. Band, C. Lehmann, D. Dudziak, G. Lee, C. Alexiou, R. Tietze, J. Magn. Magn. Mater. 473, 61–67 (2019). https://doi.org/10.2147/IJN.S218488

    Article  Google Scholar 

  20. 20.

    A.H. Atta, M.A. El-ghamry, A. Hamzaoui, M.S. Refat, J. Mol. Struct. 1086, 246–254 (2015). https://doi.org/10.1016/j.molstruc.2014.12.085

    CAS  Article  Google Scholar 

  21. 21.

    S. Arsalani, E.J. Guidelli, M.A. Silveira, C.E. Salmon, J.F. Araujo, A.C. Bruno, O. Baffa, J. Magn. Magn. Mater. 475, 458–464 (2019). https://doi.org/10.1016/j.jmmm.2018.11.132

    CAS  Article  Google Scholar 

  22. 22.

    Z. Zahedi-Tabar, S. Bagheri-Khoulenjani, S. Amanpour, H. Mirzadeh, Basic & Clinical Cancer Research (2019). https://doi.org/10.18502/bccr.v11i1.1653

  23. 23.

    Z. Hedayatnasab, F. Abnisa, W.M.A.W. Daud, Mater. Des. 123, 174–196 (2017). https://doi.org/10.1016/j.matdes.2017.03.036

    CAS  Article  Google Scholar 

  24. 24.

    B.A. Evans, M.D. Bausch, K.D. Sienerth, M.J. Davern, J. Magn. Magn. Mater. 465, 559–565 (2018). https://doi.org/10.1016/j.jmmm.2018.06.051

    CAS  Article  Google Scholar 

  25. 25.

    Y. Javed, K. Akhtar, H. Anwar, Y. Jamil, J. Nanopart. Res. 19, 366 (2017). https://doi.org/10.1007/s11051-017-4045-x

    CAS  Article  Google Scholar 

  26. 26.

    Q. Liu, L. Song, S. Chen, J. Gao, P. Zhao, J. Du, Biomaterials 114, 23–33 (2017). https://doi.org/10.1016/j.biomaterials.2016.10.027

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    E.J. Bernstein, C. Schmidt-Lauber, J. Kay, Best Pract. Res. CL. RH. 26, 489–503 (2012). https://doi.org/10.1016/j.berh.2012.07.008

    CAS  Article  Google Scholar 

  28. 28.

    J. Qin, Q. Liu, J. Zhang, J. Chen, S. Chen, Y. Zhao, J. Du, A.C.S. Appl, Mater. Interfaces 7, 14043–14052 (2015). https://doi.org/10.1021/acsami.5b03222

    CAS  Article  Google Scholar 

  29. 29.

    M.R. Jahn, T. Nawroth, S.r. Fütterer, U. Wolfrum, U. Kolb, P. Langguth, , Mol. Pharm. 9, 1628–1637 (2012). https://doi.org/10.1021/mp200628u

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    T. Ren, Q. Liu, H. Lu, H. Liu, X. Zhang, J. Du, J. Mater. Chem. 22, 12329–12338 (2012). https://doi.org/10.1039/C2JM31891A

    CAS  Article  Google Scholar 

  31. 31.

    N. Pothayee, S. Balasubramaniam, N. Pothayee, N. Jain, N. Hu, Y. Lin, R.M. Davis, N. Sriranganathan, A.P. Koretsky, J. Riffle, J. Mater. Chem. B 1, 1142–1149 (2013). https://doi.org/10.1039/C2TB00275B

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    R. Hao, R. Xing, Z. Xu, Y. Hou, S. Gao, S. Sun, Adv. Mater. 22, 2729–2742 (2010). https://doi.org/10.1002/adma.201000260

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    G. Biliuta, L. Sacarescu, V. Socoliuc, M. Iacob, L. Gheorghe, D. Negru, S. Coseri, Macromol. Chem. Phys. 218, 1700062 (2017). https://doi.org/10.1002/macp.201700062

    CAS  Article  Google Scholar 

  34. 34.

    S. Srivastava, S. Mohammad, S. Gupta, A.A. Mahdi, R.K. Dixit, V. Singh, F.M. Samadi, Natl. J. Maxillofac 9, 160 (2018). https://doi.org/10.1080/10717544.2019.1582729

    CAS  Article  Google Scholar 

  35. 35.

    M. Yusefi, K. Shameli, H. Jahangirian, S.-Y. Teow, H. Umakoshi, B. Saleh, R. Rafiee-Moghaddam, T.J. Webster, Int. J. Nanomedicine 15, 5417–5432 (2020). https://doi.org/10.2147/IJN.S250047

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    M. Ebadi, B. Saifullah, K. Buskaran, M.Z. Hussein, S. Fakurazi, Int. J. Nanomed. 14, 6661 (2019). https://doi.org/10.2147/IJN.S214923

    CAS  Article  Google Scholar 

  37. 37.

    Z. Hedayatnasab, A. Dabbagh, F. Abnisa, W.M.A.W. Daud, Mater Res Bull. 132, 110975 (2020). https://doi.org/10.1016/j.materresbull.2020.110975

    CAS  Article  Google Scholar 

  38. 38.

    N.A. Ismail, K. Shameli, M.M.-T. Wong, S.-Y. Teow, J. Chew, S.N.A.M. Sukri, Mater. Sci. Eng. C 104, 109899 (2019). https://doi.org/10.1016/j.msec.2019.109899

    CAS  Article  Google Scholar 

  39. 39.

    S.N.A.M. Sukri, K. Shameli, M.M.-T. Wong, S.-Y. Teow, J. Chew, N.A. Ismail, J. Mol. Struct. 1189, 57–65 (2019). https://doi.org/10.1016/j.molstruc.2019.04.026

    CAS  Article  Google Scholar 

  40. 40.

    Z. Izadiyan, K. Shameli, M. Miyake, H. Hara, S.E.B. Mohamad, K. Kalantari, S.H.M. Taib,E. Rasouli, Arab. J. Chem. 13, (2018) https://doi.org/10.1016/j.arabjc.2018.02.019

  41. 41.

    J.R. van Ommen, J.M. Valverde, R. Pfeffer, J. Nanopart. Res. 14, 737 (2012). https://doi.org/10.1007/s11051-012-0737-4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    S. Sisodiya, L.R. Wallenberg, E. Lewin, O.F. Wendt, Appl. Catal. A 503, 69–76 (2015). https://doi.org/10.1016/j.apcata.2015.07.001

    CAS  Article  Google Scholar 

  43. 43.

    B. Kumar, K. Smita, L. Cumbal, A. Debut, S. Galeas, V.H. Guerrero, Mater. Chem. Phys. 179, 310–315 (2016). https://doi.org/10.1016/j.matchemphys.2016.05.045

    CAS  Article  Google Scholar 

  44. 44.

    G.M. Sulaiman, A.T. Tawfeeq, A.S. Naji, Artif. Cells Nanomed. Biotechnol. 46, 1215–1229 (2018). https://doi.org/10.1080/21691401.2017.1366335

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    J. Tauc, Amorphous and liquid semiconductors. Springer Science & Business Media: 2012

  46. 46.

    A.J. Deotale, R. Nandedkar, Today 3, 2069–2076 (2016). https://doi.org/10.1016/j.matpr.2016.04.110

    Article  Google Scholar 

  47. 47.

    Z. Zhang, C. Boxall, G. Kelsall, Photoelectrophoresis of colloidal iron oxides 1. Hematite (α-Fe 2 O 3), in Colloids in the Aquatic Environment, Elsevier 145–163 (1993)

  48. 48.

    C. Boxall, G. Kelsall, Z. Zhang, J. Chem. Soc. Faraday Trans. 92, 791–802 (1996). https://doi.org/10.1039/FT9969200791

    CAS  Article  Google Scholar 

  49. 49.

    S. Yu, G.M. Chow, J. Mater. Chem. 14, 2781–2786 (2004). https://doi.org/10.1039/B404964K

    CAS  Article  Google Scholar 

  50. 50.

    N. Zhu, H. Ji, C. Shen, J. Wu, J. Niu, J. Yang, M. Farooq, H. Li, X. Niu, IEEE Trans. Appl. Supercond. 29, 1–5 (2018). https://doi.org/10.1109/TASC.2018.2882416

    CAS  Article  Google Scholar 

  51. 51.

    A. Ramirez-Nuñez, L. Jimenez-Garcia, G. Goya, B. Sanz, J. Santoyo-Salazar, Nanotechnology 29, 074001 (2018). https://doi.org/10.1088/1361-6528/aaa2c1

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    T. Lam, P. Pouliot, P.K. Avti, F. Lesage, A.K. Kakkar, Adv. Coll. Interf. Sci. 199, 95–113 (2013). https://doi.org/10.1016/j.cis.2013.06.007

    CAS  Article  Google Scholar 

  53. 53.

    U.E. Illangakoon, D.-G. Yu, B.S. Ahmad, N.P. Chatterton, G.R. Williams, Int. J. Pharm. 495, 895–902 (2015). https://doi.org/10.1016/j.ijpharm.2015.09.044

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    A. Kadam, R.G. Saratale, S. Shinde, J. Yang, K. Hwang, B. Mistry, G.D. Saratale, S. Lone, D.-Y. Kim, J.-S. Sung, Bioresour. Technol. 273, 386–393 (2019). https://doi.org/10.1016/j.biortech.2018.11.041

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Y. Li, Y. Feng, J. Jing, F. Yang, BioResources 14, 3615–3629 (2019). https://doi.org/10.15376/biores.14.2.3615-3629

  56. 56.

    I.C. Radu, A. Hudita, C. Zaharia, B. Galateanu, H. Iovu, E. Tanasa, S. Georgiana Nitu, O. Ginghina, C. Negrei, A. Tsatsakis, Drug Deliv. 26, 318–327 (2019). https://doi.org/10.1080/10717544.2019.1582729

Download references

Acknowledgements

This research was funded by Takasago Thermal Engineering Co. Ltd. grant (#4B422) from the research management center (RMC) of Universiti Teknologi Malaysia (UTM) and Malaysia-Japan International Institute of Technology (MJIIT).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kamyar Shameli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yusefi, M., Shameli, K., Hedayatnasab, Z. et al. Green synthesis of Fe3O4 nanoparticles for hyperthermia, magnetic resonance imaging and 5-fluorouracil carrier in potential colorectal cancer treatment. Res Chem Intermed (2021). https://doi.org/10.1007/s11164-020-04388-1

Download citation

Keywords

  • Green synthesis
  • Fe3O4 nanoparticles
  • Magnetic hyperthermia
  • Magnetic resonance imaging
  • Colorectal cancer