Cu2+–Mn2+-Co-doped CdO nanocrystallites: comprehensive research on phase, morphology and optoelectronic properties

Abstract

In this study, firstly cadmium hydroxide nanopowder was evolved by cost-effective wet chemical co-precipitation method. The transformation of nanocrystalline Cu2+–Mn2+-co-doped CdO occurred via thermal decomposition of the obtained hydroxide at 750 °C. The structural, optical and electrical behavior of nanocrystallites was analyzed by different complementary measuring tools. DTA of the as-prepared sample exhibited an endothermic peak at 240 °C attributed to crystallization. XRD analysis depicted a multiphase structure in the as-prepared sample, and pure rocksalt structure was obtained after annealing. Cu2+–Mn2+-co-doped cubic CdO has been achieved first time which was further confirmed by FTIR with various stretching and bending vibrations of Cd–O at 720, 625 and 460 cm−1. SEM–TEM images demonstrated the brain-like morphology of different hexagonal and spherical nanocrystallites with an average size of ~ 35 nm. In addition, optical band gap energy was found in the range 2.14–2.44 eV by Tauc’s plot. In photoluminescence results, emission spectra have many bands at 420, 480, 550 nm originated from excitonic transition, structural defects and oxygen vacancies, while intense peak at 450, 520 nm may be ascribed to Cu2+ and Mn2+ dopants, respectively. Hall measurements demonstrated that the Cu2+–Mn2+-co-doped CdO with a pure cubic phase has superior semiconducting behavior. The homogeneous codoping of Cu2+–Mn2+ leads to efficient modification in structural, optical and electrical parameters of CdO which would make such materials attractive for semiconductor and photovoltaic industry, etc.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    P. Sakthivel, S. Asaithambi, M. Karuppaiah, S. Sheikfareed, R. Yuvakkumar, G. Ravi, J. Mater. Sci.: Mater. Electron. 30, 9999 (2019)

    CAS  Google Scholar 

  2. 2.

    T. Ghoshal, S. Kar, S.K. De, Appl. Surf. Sci. 255, 8091 (2009)

    CAS  Google Scholar 

  3. 3.

    A.K. Asenjun, A. Alemi, Res. Chem. Intermed. 45, 3183 (2019)

    CAS  Google Scholar 

  4. 4.

    N. Manjula, M. Pugalenthi, V.S. Nagarethinam, K. Usharani, A.R. Balu, Mater. Sci. Poland 33, 774 (2015)

    CAS  Google Scholar 

  5. 5.

    R.J. Deokate, S.V. Salunkhe, G.L. Agawane, B.S. Pawar, S.M. Pawar, K.Y. Rajpure, A.V. Moholkar, J.H. Kim, J. Alloys Compd. 496, 357 (2010)

    CAS  Google Scholar 

  6. 6.

    A.A. Dakhel, Mater. Chem. Phys. 130, 398 (2011)

    CAS  Google Scholar 

  7. 7.

    M. Thirumoorthi, J.T.J. Prakash, J. Asian Ceram. Soc. 4, 39 (2016)

    Google Scholar 

  8. 8.

    A.G. Imer, Superlattices Microstruct. 92, 278 (2016)

    Google Scholar 

  9. 9.

    S. Sivakumar, A. Venkatesan, P. Soundhirarajan, C.P. Khatiwada, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 151, 760 (2015)

    CAS  Google Scholar 

  10. 10.

    M. Thambidurai, N. Muthukumarasamy, A. Ranjitha, D. Velauthapillai, Superlattices Microstruct. 86, 559 (2015)

    CAS  Google Scholar 

  11. 11.

    B.J. Zhang, J.S. Lian, L. Zhao, Q. Jiang, Vacuum 85, 861 (2011)

    Google Scholar 

  12. 12.

    R. Aydin, B. Sahin, Ceram. Int. 43, 9285 (2017)

    CAS  Google Scholar 

  13. 13.

    R.K. Gupta, Z. Serbetci, F. Yakuphanoglu, J. Alloys Compd. 515, 96 (2012)

    CAS  Google Scholar 

  14. 14.

    M. Bououdina, A.A. Dakhel, J. Alloys Compd. 601, 162 (2014)

    CAS  Google Scholar 

  15. 15.

    A.A. Kaya, K. Erturk, Eur. Phys. J. B 92, 121 (2019)

    Google Scholar 

  16. 16.

    A.A. Dakhel, M.A. Khunji, A.R. Albasri, J. Electron. Mater. 47, 4855 (2018)

    CAS  Google Scholar 

  17. 17.

    G.T. Rao, B. Babu, R.J. Stella, V.P. Manjari, R.V.S.S.N. Ravikumar, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 139, 86 (2015)

    Google Scholar 

  18. 18.

    H. Çolak, O. Türkoğlu, Mater. Sci. Semicond. Process. 16, 712 (2013)

    Google Scholar 

  19. 19.

    S.M.H. Al-Jawad, M.M. Ismail, J. Opt. Technol. 84, 495 (2017)

    CAS  Google Scholar 

  20. 20.

    S. Ummartyotin, N. Bunnak, J. Juntaro, M. Sain, H. Manuspiya, Solid State Sci. 14, 299 (2012)

    CAS  Google Scholar 

  21. 21.

    M.I. Pratheepa, M. Lawrence, Vacuum 162, 208 (2019)

    CAS  Google Scholar 

  22. 22.

    C. Bhukkal, M. Chohan, R. Ahlawat, Phys. B Condens. Matt. 582, 411973 (2020)

    CAS  Google Scholar 

  23. 23.

    S.C. Singh, R.K. Swarnkar, R. Gopal, J. Nanopart. Res. 11, 1831 (2009)

    CAS  Google Scholar 

  24. 24.

    V. Eskizeybek, O. Demir, A. Avci, M. Chhowalla, J. Nanopart. Res. 13, 4673 (2011)

    CAS  Google Scholar 

  25. 25.

    L.A. Saghatforoush, S. Sanati, R. Mehdizadeh, M. Hasanzadeh, Superlattices Microstruct. 52, 885 (2012)

    CAS  Google Scholar 

  26. 26.

    C. Bhukkal, R. Ahlawat, AIP Conf. Proc. 2142, 140017 (2019)

    Google Scholar 

  27. 27.

    M. Khairy, H.A. Ayoub, C.E. Banks, RSC Adv. 8, 921 (2018)

    CAS  Google Scholar 

  28. 28.

    J.K. Rajput, T.K. Pathak, V. Kumar, L.P. Purohit, Appl. Surf. Sci. 409, 8 (2017)

    CAS  Google Scholar 

  29. 29.

    S. Balamurugan, A.R. Balu, K. Usharani, M. Suganya, S. Anitha, D. Prabha, S. Ilangovan, Pac. Sci. Rev. A Nat. Sci. Eng. 18, 228 (2016)

    Google Scholar 

  30. 30.

    K. Mohanraj, D. Balasubramanian, Silicon 10, 1111 (2018)

    CAS  Google Scholar 

  31. 31.

    R. Ahlawat, Ceram. Int. 41, 7345 (2015)

    CAS  Google Scholar 

  32. 32.

    A. Purohit, S. Chander, S.L. Patel, K.J. Rangra, M.S. Dhaka, Phys. Lett. A 381, 1910 (2017)

    CAS  Google Scholar 

  33. 33.

    I. Yadav, D.S. Ahlawat, R. Ahlawat, Appl. Phys. A 122, 245 (2016)

    Google Scholar 

  34. 34.

    K. Usharani, A.R. Balun, V.S. Nagarethinam, M. Suganya, Prog. Nat. Sci. Mater. Int. 25, 251 (2015)

    CAS  Google Scholar 

  35. 35.

    S. Kumar, A.K. Ojha, B. Walkenfort, J. Photochem. Photobiol. B Biol. 159, 111 (2016)

    CAS  Google Scholar 

  36. 36.

    R. Ahlawat, P. Aghamkar, Opt. Mater. 36, 337 (2013)

    Google Scholar 

  37. 37.

    N. Thovhogi, E. Park, E. Manikandan, M. Maaza, A. Gurib-Fakim, J. Alloys Compd. 655, 314 (2016)

    CAS  Google Scholar 

  38. 38.

    M. Benhaliliba, C.E. Benouis, A. Tiburcio-Silver, F. Yakuphanoglu, A.A. Garcíad, A. Tavira, R.R. Trujillo, Z. Mouffak, J. Lumin. 132, 2653 (2012)

    CAS  Google Scholar 

  39. 39.

    T. Aswani, V. Pushpa-Manjari, B. Babu, S.M. Begum, G. Rama-Sundari, K. Ravindranadh, R.V.S.S.N. Ravikumar, J. Mol. Struct. 1063, 178 (2014)

    CAS  Google Scholar 

  40. 40.

    F.T. Thema, P. Beukes, A. Gurib-Fakim, M. Maaza, J. Alloys Compd. 646, 1043 (2015)

    CAS  Google Scholar 

  41. 41.

    N. Shanmugam, B. Saravanan, R. Reagan, N. Kannadasan, K. Sathishkumar, S. Cholan, Mod. Chem. Appl. 2, 1000124 (2014)

    Google Scholar 

  42. 42.

    R. Kripal, A.K. Gupta, S.K. Mishra, R.K. Srivastava, A.C. Pandey, S.G. Prakash, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 76, 523 (2010)

    Google Scholar 

  43. 43.

    J.K. Rajput, T.K. Pathak, V. Kumar, M. Kumar, L.P. Purohit, Surf. Interfaces 6, 11 (2017)

    CAS  Google Scholar 

Download references

Acknowledgements

The CIL at MNIT Jaipur, SAIF at Punjab University, Chandigarh and GJUS and T, Hisar, Haryana, India, are gratefully acknowledged for providing characterization facilities.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rachna Ahlawat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bhukkal, C., Ahlawat, R. Cu2+–Mn2+-Co-doped CdO nanocrystallites: comprehensive research on phase, morphology and optoelectronic properties. Res Chem Intermed (2020). https://doi.org/10.1007/s11164-020-04202-y

Download citation

Keywords

  • Cu2+–Mn2+-co-doped CdO
  • Multiphase structure
  • Absorbance
  • Photoluminescence
  • Resistivity
  • Mobility