A novel method for synthesis of mesoporous ZSM-5 from iron ore tailings


Mesoporous ZSM-5 was prepared from iron ore tailings (IOT) using a two-step process. Mesoporous MCM-41 was first synthesized using cetyltrimethylammonium bromide (CTAB) as mesoporous template and IOT as silica source. The CTAB in the as-synthesized MCM-41 was used as the mesoporogen to produce the mesoporous ZSM-5, by recrystallizing the amorphous walls of MCM-41 with tetrapropylammonium bromide (TPABr) as the structure-directing agent via solid-phase conversion. To evaluate the textural properties of mesoporous ZSM-5, the as-synthesized samples were characterized using x-ray diffraction, scanning electron microscopy, transmission electron microscopy, 29Si, 27Al magic angle spinning nuclear magnetic resonance spectroscopy, and nitrogen adsorption. The results show that phase separation between the surfactant and zeolite crystals was avoided in the solid-phase conversion process, which transforms the as-synthesized MCM-41 to mesoporous zeolite. Therefore, the synthetic route presented herein provides a novel method for the synthesis of mesoporous ZSM-5 from IOT.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    K. Moller, B. Yilmaz, R.M. Jacubinas, U. Müller, T. Bein, J. Am. Chem. Soc. 133, 5284 (2011)

    CAS  Article  Google Scholar 

  2. 2.

    M.V. Parfenov, S.E. Malykhin, L.V. Pirutko, A.S. Kharitonov, E.V. Starokon, Res. Chem. Intermed. 41, 8735 (2015)

    CAS  Article  Google Scholar 

  3. 3.

    T.G. Ge, Z.L. Hua, X.Y. He, J. Lv, H.R. Chen, L.X. Zhang, H.L. Yao, Z.W. Liu, J.L. Shi, Chem. Eur. J. 22, 7895 (2016)

    CAS  Article  Google Scholar 

  4. 4.

    T. Guan, S.M. Wang, X. Wang, C. Sun, Y.B. Wang, Micropor. Mesopor. Mater. 265, 266 (2018)

    CAS  Article  Google Scholar 

  5. 5.

    H. Wang, T.J. Pinnavaia, Angew. Chem. Int. Ed. 45, 7603 (2006)

    CAS  Article  Google Scholar 

  6. 6.

    M. Choi, H.S. Cho, R. Srivastava, C. Venkatesan, D.H. Choi, R. Ryoo, Nature Mater. 5, 718 (2006)

    CAS  Article  Google Scholar 

  7. 7.

    C.L. Li, Y.Q. Wang, B.F. Shi, J.W. Ren, Y.L. Guo, G.Z. Lu, Micropor. Mesopor. Mater. 117, 104 (2009)

    CAS  Article  Google Scholar 

  8. 8.

    Z. Zhou, Z.L. Hua, Z.C. Liu, W. Wu, Z. Zhu, J.L. Shi, ACS Catal. 1, 287 (2011)

    CAS  Article  Google Scholar 

  9. 9.

    Z. Zhou, Z.L. Hua, X.Z. Cui, Z.Q. Ye, F.M. Cui, J.L. Shi, Chem. Commun. 46, 4994 (2010)

    CAS  Article  Google Scholar 

  10. 10.

    G.T. Neumann, J.C. Hicks, Cryst. Growth Des. 13, 1535 (2013)

    CAS  Article  Google Scholar 

  11. 11.

    G.T. Neumann, J.C. Hicks, ACS Catal. 2, 642 (2012)

    CAS  Article  Google Scholar 

  12. 12.

    L.H. Chen, S.T. Xu, X.Y. Li, J.C. Rooke, X.Y. Yang, Z.M. Liu, B.L. Su, J. Colloid Interf. Sci. 377, 368 (2012)

    CAS  Article  Google Scholar 

  13. 13.

    L.M. Ren, Q.M. Wu, C.G. Yang, L.F. Zhu, C.J. Li, P.L. Zhang, H.Y. Zhang, X.J. Meng, F.S. Xiao, J. Am. Chem. Soc. 134, 15173 (2012)

    CAS  Article  Google Scholar 

  14. 14.

    X. Meng, F.S. Xiao, Chem. Rev. 114, 1521 (2014)

    CAS  Article  Google Scholar 

  15. 15.

    P. Zhang, L. Wang, L. Ren, L. Zhu, Q. Sun, J. Zhang, X. Meng, F.S. Xiao, J. Mater. Chem. 21, 12026 (2011)

    CAS  Article  Google Scholar 

  16. 16.

    Y. Jin, Q. Sun, G. Qi, C. Yang, J. Xu, F. Chen, X. Meng, F. Deng, F.S. Xiao, Chem. Int. Ed. Engl. 52, 9172 (2011)

    Article  Google Scholar 

  17. 17.

    Q. Wu, X. Liu, L. Zhu, L. Ding, P. Gao, X. Wang, S. Pan, C. Bian, X. Meng, J. Xu, F. Deng, S. Maurer, U. Muller, F.S. Xiao, J. Am. Chem. Soc. 136, 4019 (2014)

    CAS  Article  Google Scholar 

  18. 18.

    R.M. Mohamed, H.M. Aly, M.F. El-Shahat, I.A. Ibrahim, Micropor. Mesopor. Mater. 79, 7 (2007)

    Article  Google Scholar 

  19. 19.

    H.T. Yu, X.X. Xue, D.W. Huang, Res. Bull. 44, 211 (2007)

    Google Scholar 

  20. 20.

    G. Yang, Y.X. Deng, D. Ding, Z.X. Lin, Y.K. Shao, Y. Wang, Appl. Clay Sci. 111, 61 (2015)

    CAS  Article  Google Scholar 

  21. 21.

    Y. Zuo, T. Zhang, M. Liu, Y. Ji, C.S. Song, X.W. Guo, Ind. Eng. Chem. Res. 57, 512 (2018)

    CAS  Article  Google Scholar 

  22. 22.

    L.M. Huang, W.P. Guo, P. Deng, Z.Y. Xue, Q.Z. Li, J. Phys. Chem. B 104, 2817 (2000)

    CAS  Article  Google Scholar 

  23. 23.

    P. Li, G. Xiong, L.P. Liu, L.L. Wang, Spectrochim. Actaa. 107, 218 (2013)

    CAS  Article  Google Scholar 

  24. 24.

    N. Alam, R. Mokaya, J. Mater. Chem. A 3, 7799 (2015)

    CAS  Article  Google Scholar 

  25. 25.

    A.S. Araujo, V.J. Fernandes, A.O.S. Silva, J.M.F.B. Aquino, Thermochim. Acta 413, 235 (2004)

    CAS  Article  Google Scholar 

  26. 26.

    G. Yang, Y.X. Deng, J. Wang, Ceram. Int. 40, 7401 (2014)

    CAS  Article  Google Scholar 

Download references


This work was supported by the National Natural Science Foundation of China (Project 51874039) and Major Science and Technology Program for Water Pollution Control and Treatment (2017ZX07402001). The authors would like to thank Siyuan Wang from Shiyanjia Lab for support in the XRD analysis (www.shiyanjia.com).

Author information



Corresponding author

Correspondence to Suqin Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 174 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Li, S. & Guo, P. A novel method for synthesis of mesoporous ZSM-5 from iron ore tailings. Res Chem Intermed (2020). https://doi.org/10.1007/s11164-020-04193-w

Download citation


  • Mesoporous ZSM-5
  • Iron ore tailings (IOT)
  • Solid-phase conversion
  • Dual-templating method