Synthesis of 2,2,4-trimethyl-1,2-dihydroquinolines over metal-modified 12-tungstophosphoric acid-supported γ-Al2O3 catalyst

Abstract

In spite of having significant pharmacological importance, scalable synthesis of 2,2,4-trimethyl-1,2-H-dihydroquinoline (TMQ) is always being cumbersome due to harmful solvents, drastic reaction conditions, and high recovery cost of homogeneous catalysts. Heterogeneous catalytic condensation of aniline with acetone was employed here to synthesize TMQ. As efficient materials, Zn2+-, Sn2+-, and Cu2+-exchanged tungstophosphoric acid (TPA) supported on γ-Al2O3 was synthesized by microwave-assisted hydrothermal method. The synthesized catalysts were thoroughly characterized by XRD, Raman, FE-SEM, etc. and were screened for condensation reaction. Among the metal-exchanged catalysts, Zn0.5TPA/Al2O3 showed highest aniline conversion with the highest yield of TMQ up to three consecutive cycles. The acidic sites over the catalysts were probed by pyridine-adsorbed FT-IR spectra and NH3-TPD studies. The reaction conditions were optimized, and plausible reaction mechanistic pathway was derived from FT-IR and GC–MS data.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Fig. 7
Fig. 8
Scheme 2

References

  1. 1.

    A.R. Katritzky, C.W. Rees, E.F.V. Scriven, Comprehensive Heterocyclic Chemistry, II edn. (Elsevier, Oxford, 1996)

    Google Scholar 

  2. 2.

    J.V. Johnson, B.S. Rauckman, D.P. Baccanari, B. Roth, J. Med. Chem. 32, 1942 (1989)

    CAS  PubMed  Google Scholar 

  3. 3.

    T. Aono, T. Doi K. Fukatsu, JP 042823701992 A2 (1992)

  4. 4.

    G. de Nanteuil, J. Duhault, D. Ravel, Y. Herve, EP 528734 (1993)

  5. 5.

    B.C. Pearce, J.J. Wright, US Patent 5411969 (1995)

  6. 6.

    T.K. Jones, M.E. Goldman, C.L.F. Pooley, D.T. Winn, J.E. Edwards, S.J. West, C.M. Tegley, L. Zhi, L.G. Hamann, WO 9619458 (1996)

  7. 7.

    M.J. Coughlan, S.W. Elmore, M.E. Kort, P.R. Kym, J.L. Moore, J.K. Pratt, A.X. Wang, J.P. Edwards, T.K. Jones, WO 9941256 (1999)

  8. 8.

    E.M. Bickhoff, A.L. Livingston, J. Guggolz, C.R. Thompson, A. Carotene, J. Agric. Food. Chem. 24, 1229 (1954)

    Google Scholar 

  9. 9.

    W. Helmut, S. Worth, Leslie, US Patent 5147844 A (1992)

  10. 10.

    A.R. Katritzky, S. Rachwal, B. Rachwal, Terrahedron 52, 15031 (1996)

    CAS  Google Scholar 

  11. 11.

    Z.H. Skraup, Monatsh. Chem. 1, 316 (1880)

    Google Scholar 

  12. 12.

    Z.H. Skraup, Monatsh. Chem. 2, 139 (1881)

    Google Scholar 

  13. 13.

    Z.H. Skraup, Monatsh. Chem. 2, 587 (1881)

    Google Scholar 

  14. 14.

    M.E. Theoclitou, L.A. Robinson, Tetrahedron Lett. 43, 3907 (2002)

    CAS  Google Scholar 

  15. 15.

    J. Fotie, N. Massawe, B.T. Bhattarai, J.L. Rhodus, A.S. Thomas, D.S. Bohle, J. Org. Chem. 77, 2784 (2012)

    CAS  PubMed  Google Scholar 

  16. 16.

    R.U. Gutierrez, H.C. Correa, A.V. Jerezano, F. Delgado, J. Tamariz, J. Org. Chem. 78, 9614 (2013)

    CAS  PubMed  Google Scholar 

  17. 17.

    M. Kazuishi, H. Osamu, H. Yasumasa, Tetrahedron Lett. 44, 8925 (2003)

    Google Scholar 

  18. 18.

    J.S. Yadav, K. Premalatha, M.S.R. Murty, J. Mol. Cat. A: Chem. 271, 161 (2007)

    CAS  Google Scholar 

  19. 19.

    L.L. Genliang, Portscheller Helena, C. Malinakova, Organometallics 24, 945 (2005)

    Google Scholar 

  20. 20.

    X.Y. Liu, P. Ding, J.S. Huang, C.M. Che, Org. Lett. 9, 2645 (2007)

    CAS  PubMed  Google Scholar 

  21. 21.

    C.S. Yi, S.Y. Yun, J. Am. Chem. Soc. 127, 17000 (2005)

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Y. Luo, Z. Li, C. Li, J. Org. Lett. 7, 2675 (2005)

    CAS  Google Scholar 

  23. 23.

    X.-Y. Hu, J.-C. Zhang, J.-X. Ji, Tetrahedron Lett. 52, 2903 (2011)

    CAS  Google Scholar 

  24. 24.

    H. Waldmann, G.V. Karunakar, K. Kumar, Org. Lett. 10, 2159 (2008)

    CAS  PubMed  Google Scholar 

  25. 25.

    G. Li, H. Liu, Y. Wang, S. Zhang, S. Lai, L. Tang, J. Zhao, Z. Tanga, Chem. Commun. 52(11), 2304 (2016)

    CAS  Google Scholar 

  26. 26.

    D. Kundu, S.K. Kundu, A. Majee, A. Hajra, J. Chin. Chem. Soc. 55, 1186 (2008)

    CAS  Google Scholar 

  27. 27.

    M. Eda, T. Kuroda, S. Kaneko, Y. Aoki, M. Yamashita, C. Okumura, Y. Ikeda, T. Ohbora, M. Sakaue, N. Koyama, K. Aritomo, J. Med. Chem. 58(12), 4918 (2015)

    CAS  PubMed  Google Scholar 

  28. 28.

    Y. Li, W. Chunlei, J. Huang, S. Weike, Synth. Commun. 36, 3065 (2006)

    CAS  Google Scholar 

  29. 29.

    M. Cheng, X. Yang, J. Li, C. Chen, J. Zhao, Yu. Wang, L. Sun, Chem. Eur. J. 18(50), 16196 (2012)

    CAS  PubMed  Google Scholar 

  30. 30.

    R. Chen, X. Yang, H. Tian, X. Wang, A. Hagfeldt, L. Sun, Chem. Mater. 19(16), 4007 (2007)

    CAS  Google Scholar 

  31. 31.

    J. Fotie, M. Kaiser, D.A. Delfín, J. Manley, C.S. Reid, J.-M. Paris, T. Wenzler, L. Maes, K.V. Mahasenan, C. Li, K.A. Werbovetz, J. Med. Chem. 53(3), 966 (2010)

    CAS  PubMed  Google Scholar 

  32. 32.

    G. Parameswaram, S. Roy, RSC Adv. 8, 28461 (2018)

    CAS  Google Scholar 

  33. 33.

    P. Ganji, S. Roy, Catal. Commun. 134, 105864 (2020)

    Google Scholar 

  34. 34.

    J. Li, X. Wang, W. Zhu, F. Cao, ChemSusChem 2, 177 (2009)

    CAS  PubMed  Google Scholar 

  35. 35.

    S. Shraavan, S. Challagulla, S. Banerjee, S. Roy, Bull. Mater. Sci. 40(7), 1415 (2017)

    CAS  Google Scholar 

  36. 36.

    P.K.R. Boppidi, P.M.P. Raj, S. Challagulla, S.R. Gollu, S. Roy, S. Banerjee, S. Kundu, J. Appl. Phys. 124(21), 214901 (2018)

    Google Scholar 

  37. 37.

    S. Roy, B. Viswanath, M.S. Hegde, G. Madras, J. Phys. Chem. C 112(15), 6002 (2008)

    CAS  Google Scholar 

  38. 38.

    S. Kamiguchi, I. Takahashi, H. Kurokawa, H. Miura, T. Chihara, Appl. Catal. A 309, 70 (2006)

    CAS  Google Scholar 

  39. 39.

    A. Hegedu, Z. Hella, T. Vargadi, A. Potor, I. Gresitsb, Catal. Lett. 117, 99 (2001)

    Google Scholar 

  40. 40.

    J. Nowickia, K. Jaroszewskab, E. Nowakowska-Bogdana, M. Szmatołaa, J. Llowskaa, Mol. Catal. 454, 94 (2018)

    Google Scholar 

  41. 41.

    Ch. Ramesh Kumar, P.S. Sai Prasad, N. Lingaiah, J. Mol. Catal. A: Chem. 350, 83 (2011)

    CAS  Google Scholar 

  42. 42.

    M.H. Haider, N.F. Dummer, D. Zhang, P. Miedziak, T.E. Davies, S.H. Taylor, D.J. Willock, D.W. Knight, D. Chadwick, G.J. Hutchings, J. Catal. 286, 206 (2012)

    CAS  Google Scholar 

  43. 43.

    S.E. Denmark, S. Venkatraman, J. Org. Chem. 71, 1688 (2006)

    Google Scholar 

  44. 44.

    J. Jang, J. Ha, B. Lim, Chem. Commun. 622, 1622 (2006)

    Google Scholar 

  45. 45.

    Z. Chen, C.D. Pina, E. Falletta, M. Rossi, J. Catal. 227, 93 (2009)

    Google Scholar 

  46. 46.

    G.D. Yadav, R.P. Kumbhar, S. Helder, Int. Rev. Chem. Eng. 4, 6 (2012)

    Google Scholar 

  47. 47.

    A.K. Hajare, A.R. Jagdale, A.G. Gautham Shenoybb, N. Sinha, New J. Chem. 40, 4888 (2016)

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sounak Roy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2211 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Krishna, B., Roy, S. Synthesis of 2,2,4-trimethyl-1,2-dihydroquinolines over metal-modified 12-tungstophosphoric acid-supported γ-Al2O3 catalyst. Res Chem Intermed (2020). https://doi.org/10.1007/s11164-020-04191-y

Download citation

Keywords

  • 2,2,4-Trimethyl-1,2-H-dihydroquinoline
  • Metal-exchanged tungstophosphoric acid
  • Reaction intermediate