Skip to main content

Advertisement

Log in

Photoelectrochemical properties of copper oxide (CuO) influenced by work functions of conductive electrodes

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Copper (II) oxide (CuO) is a promising p-type semiconductor for water splitting to produce hydrogen under visible-light irradiation. The CuO photoelectrode was successfully fabricated on several conductive supports by an assist of electrochemical deposition methods. The electronic structures of CuO electrodes were characterized by FE-SEM, XRD, UV–Vis, Raman, electrochemical impedance spectroscopy, as well as photoelectrochemical properties. Cathodic photocurrent was observed on the CuO electrodes in 0.5 M Na2SO4 aqueous solution under AM1.5G solar irradiation. It was also found that the photocurrent densities significantly increased as an increase in work functions of conductive supports: carbon < FTO < gold < nickel < platinum plates. It was clearly demonstrated that Ohmic junction between CuO and conductive supports with large work function plays a significant role in the effective charge separations of holes and electrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Fujishima, K. Honda, Nature 238, 37 (1972)

    CAS  PubMed  Google Scholar 

  2. J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Chem. Rev. 114, 9919 (2014)

    CAS  PubMed  Google Scholar 

  3. A. Kudo, Y. Miseki, Chem. Soc. Rev. 38, 253 (2009)

    CAS  PubMed  Google Scholar 

  4. Y. Wang, H. Suzuki, J. Xie, O. Tomita, D. Martin, M. Higashi, D. Kong, R. Abe, J. Tang, Chem. Rev. 118, 5201 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  5. M. Anpo, S. Kishiguchi, Y. Ichihashi, M. Takeuchi, H. Yamashita, K. Ikeue, B. Morin, A. Davidson, M. Che, Res. Chem. Intermed. 27, 459 (2001)

    CAS  Google Scholar 

  6. Y. Horiuchi, S. Mine, M. Moriyasu, M. Anpo, T.-H. Kim, M. Matsuoka, Res. Chem. Intermed. 43, 5123 (2017)

    CAS  Google Scholar 

  7. M. Takeuchi, M. Matsuoka, M. Anpo, Res. Chem. Intermed. 38, 1261 (2012)

    CAS  Google Scholar 

  8. A. Ebrahimi, M. Kitano, K. Iyatani, Y. Horiuchi, M. Takeuchi, M. Matsuoka, M. Anpo, Res. Chem. Intermed. 39, 1593 (2013)

    CAS  Google Scholar 

  9. S. Higashimoto, Y. Tanaka, R. Ishikawa, S. Hasegawa, M. Azuma, H. Ohue, Y. Sakata, Catal. Sci. Technol. 3, 400 (2013)

    CAS  Google Scholar 

  10. S. Higashimoto, K. Hikita, M. Azuma, M. Yamamoto, M. Takahashi, Y. Sakata, M. Matsuoka, H. Kobayashi, Chin. J. Chem. 35, 165 (2017)

    CAS  Google Scholar 

  11. G. Li, J. Shi, G. Zhang, Y. Fang, M. Anpo, X. Wang, Res. Chem. Intermed. 43, 5137 (2017)

    CAS  Google Scholar 

  12. J. Zhao, T. Minegishi, H. Kaneko, G. Ma, M. Zhong, M. Nakabayashi, T. Hisatomi, M. Katayama, N. Shibata, T. Yamada, K. Domen, Chem. Commun. 55, 470 (2019)

    CAS  Google Scholar 

  13. Gunawan, W. Septina, T. Harada, Y. Nose, S. Ikeda, ACS Appl. Mater. Interfaces 7, 16086 (2015)

    CAS  PubMed  Google Scholar 

  14. S.M. Lee, S. Ikeda, T. Yagi, T. Harada, A. Ennaoui, M. Matsumura, Phys. Chem. Chem. Phys. 13, 6662 (2011)

    CAS  PubMed  Google Scholar 

  15. F. Jiang, Gunawan, T. Harada, Y. Kuang, T. Minegishi, K. Domen, S. Ikeda, J. Am. Chem. Soc. 137, 13691 (2015)

    CAS  PubMed  Google Scholar 

  16. A. Paracchino, V. Laporte, K. Sivula, M. Grätzel, E. Thimsen, Nat. Mater. 10, 456 (2011)

    CAS  PubMed  Google Scholar 

  17. I. Minguez-Bacho, M. Courte, H.J. Fan, D. Fichou, Nanotechnology 6, 185401 (2015)

    Google Scholar 

  18. Z. Kang, X. Yan, Y. Wang, Z. Bai, Y. Liu, Z. Zhang, P. Lin, X. Zhang, H. Yuan, X. Zhang, Y. Zhang, Sci. Rep. 5, 7882 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  19. L. Yang, S. Luo, Y. Li, Y. Xiao, Q. Kang, Q. Cai, Environ. Sci. Technol. 44, 7641 (2010)

    CAS  PubMed  Google Scholar 

  20. L.L. Wu, L.K. Tsui, N. Swami, G. Zangari, J. Phys. Chem. C 114, 11551 (2010)

    CAS  Google Scholar 

  21. A. Paracchino, J.C. Brauer, J.E. Moser, E. Thimsen, M. Grätzel, J. Phys. Chem. C 116, 7341 (2012)

    CAS  Google Scholar 

  22. Z.H. Zhang, P. Wang, J. Mater. Chem. 22, 2456 (2012)

    CAS  Google Scholar 

  23. C.G. Morales-Guio, S.D. Tilley, H. Vrubel, M. Grätzel, X.L. Hu, Nat. Commun. 5, 1 (2014)

    Google Scholar 

  24. P. Wang, X. Wen, R. Amal, Y.H. Ng, RSC Adv. 5, 5231 (2015)

    CAS  Google Scholar 

  25. S.K. Lakhera, R. Venkataramana, A. Watts, M. Anpo, B. Neppolian, Res. Chem. Intermed. 43, 5091 (2017)

    CAS  Google Scholar 

  26. X. Liu, L. Cao, W. Sun, Z. Zhenhua, Y. Ji, Res. Chem. Intermed. 42, 6289 (2016)

    CAS  Google Scholar 

  27. K. Zhong, J. Su, Res. Chem. Intermed. 45, 1207 (2019)

    CAS  Google Scholar 

  28. W. Hong, M. Meng, Q. Liu, D. Gao, C. Kang, S. Huang, Z. Zhou, C. Chen, Res. Chem. Intermed. 43, 2517 (2017)

    CAS  Google Scholar 

  29. Y. Yang, Y. Li, M. Pritzker, Electrochim. Acta 213, 225 (2016)

    CAS  Google Scholar 

  30. A. Paracchino, N. Mathieu, T. Hisatomi, M. Stefik, S.D. Tilley, M. Grätzel, Energy Environ. Sci. 5, 8673 (2012)

    CAS  Google Scholar 

  31. J. Toupin, H. Strubb, S. Kressman, V. Artero, N. Krins, Ch. Laberty-Robert, J. Sol-Gel Sci. Technol. 89, 255 (2019)

    CAS  Google Scholar 

  32. Z. Jin, X. Zhang, Y. Li, S. Li, G. Lu, Catal. Commun. 8, 1267 (2007)

    CAS  Google Scholar 

  33. Z. Liu, H. Bai, S. Xu, D.D. Sun, Int. J. Hydrogen Energy 36, 13473 (2011)

    CAS  Google Scholar 

  34. J. Koshy, K.C. Goerge, Int. J. Nanosci. Nanotechnol. 6, 1 (2015)

    Google Scholar 

  35. C.-Y. Chiang, M.-H. Chang, H.-S. Liu, C.Y. Tai, S. Ehrman, Ind. Eng. Chem. Res. 51, 5207 (2012)

    CAS  Google Scholar 

  36. S. Masudy-Panah, R.S. Moakhar, C.S. Chua, H.R. Tan, T.I. Wong, D. Chi, G.K. Dalapati, ACS Appl. Mater. Interfaces 8, 1206 (2016)

    CAS  PubMed  Google Scholar 

  37. S. Masudy-Panah, R.S. Moakhar, C.S. Chua, H.R. Tan, T.I. Wong, D. Chi, G.K. Dalapati, RSC Adv. 6, 29383 (2016)

    CAS  Google Scholar 

  38. Y.F. Lim, C.S. Chua, C.J.J. Lee, D. Chi, Phys. Chem. Chem. Phys. 16, 25928 (2014)

    CAS  PubMed  Google Scholar 

  39. X. Guo, P. Diao, D. Xu, S. Huang, Y. Yang, T. Jin, Q. Wu, M. Xiang, M. Zhang, Int. J. Hydrogen Energy 39, 7686 (2014)

    CAS  Google Scholar 

  40. F.P. Koffyberg, F.A. Benko, J. Appl. Phys. 53, 1173 (1982)

    CAS  Google Scholar 

  41. K. Nakaoka, J. Ueyama, K. Ogura, J. Electrochem. Soc. 151, C661 (2004)

    CAS  Google Scholar 

  42. D. Chauhan, V.R. Satsangi, S. Dass, R. Shrivastav, Mater. Sci. 29, 709 (2006)

    CAS  Google Scholar 

  43. C.Y. Chiang, Y. Shin, S.H. Ehrman, J. Electrochem. Soc. 159, B227 (2012)

    CAS  Google Scholar 

  44. F.N. Crespilho, V. Zucolotto, J.R. Siqueira Jr., A.J.F. Carvalho, F.C. Nart, O.N. Oliveira Jr., Int. J. Electrochem. Sci. 1, 151 (2006)

    CAS  Google Scholar 

  45. J. Gerischer, B.O. Seraphin (eds.), Solar Energy Conversion (Springer, Berlin, 1979), p. 15

    Google Scholar 

  46. K. Takahashi, J. Azuma, M. Kamada, Phys. Rev. B 85, 075325 (2012)

    Google Scholar 

  47. H. Lei, P. Qin, W. Ke, Y. Guo, X. Dai, Z. Chen, H. Wang, B. Li, Org. Electron. 22, 173 (2015)

    CAS  Google Scholar 

  48. M. Turrión, J. Bisquert, P. Salvador, J. Phys. Chem. B 107(35), 9397 (2003)

    Google Scholar 

  49. Y. Lou, Z. Wang, S. Naka, H. Okada, Chem. Phys. Lett. 529, 64 (2012)

    CAS  Google Scholar 

  50. B.G. Baker, B.B. Johnson, G.L.C. Maire, Surf. Sci. 24, 572 (1971)

    CAS  Google Scholar 

  51. W. Shockley, W.T. Read, Phys. Rev. 87, 835 (1952)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinya Higashimoto.

Additional information

This manuscript is dedicated to the late Prof Michel Che.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1062 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomita, R., Pu, Z., Kamegawa, T. et al. Photoelectrochemical properties of copper oxide (CuO) influenced by work functions of conductive electrodes. Res Chem Intermed 45, 5947–5958 (2019). https://doi.org/10.1007/s11164-019-04012-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-019-04012-x

Keywords

Navigation