Skip to main content
Log in

Direct dimethyl ether synthesis over mesoporous Cu–Al2O3 catalyst via CO hydrogenation

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Syngas conversion to dimethyl ether (DME) is an important reaction (STD) in C1 chemistry since DME not only possesses high value but also can be used as a vital chemical intermediate. Here, we design a Cu-based mesoporous alumina catalyst to realize the DME synthesis reaction. It exhibits high catalytic activity in terms of CO conversion of 21.2% and DME selectivity of 95.9% according to its synergistic effect between the Cu and alumina. In the Cu-based alumina catalyst, the Cu–Cu bond is for converting CO to methanol and the Cu–Al bond is for the formed methanol dehydration to DME. Therefore, the well-dispersed Cu nanoparticles provide amounts of active sites for methanol synthesizing, at the same time as the strong metal–support interaction between the Cu nanoparticles and mesoporous alumina offering Cu–Al active sites for methanol quick dehydration to DME. In addition, the mesopores supplied by alumina support also accelerate the mass transfer and diffusion, boosting the CO activation. This study points out the real active phase for DME synthesis, which plays an important guiding role in design of related catalysts for DME synthesis.

Graphic abstract

The process of syngas conversion to DME over Cu-based mesoporous alumina catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P. Prasad, J. Bae, S. Kang, Y. Lee, K. Jun, Fuel Process. Technol. 89, 1281 (2008)

    CAS  Google Scholar 

  2. J. Sun, G. Yang, Y. Yoneyama, N. Tsubaki, ACS Catal. 4, 3346 (2014)

    CAS  Google Scholar 

  3. K. Takeishi, Biofuels 1, 217 (2010)

    CAS  Google Scholar 

  4. D. Mao, W. Yang, J. Xia, B. Zhang, Q. Song, Q. Chen, J. Catal. 230, 140 (2005)

    CAS  Google Scholar 

  5. S. Papari, M. Kazemeini, M. Fattahi, J. Nat. Gas Chem. 21, 148 (2012)

    CAS  Google Scholar 

  6. J. Hu, Y. Wang, C. Cao, D. Elliott, D. Stevens, J. White, Ind. Eng. Chem. Res. 44, 1722 (2005)

    CAS  Google Scholar 

  7. C. Arcoumanis, C. Bae, R. Crookes, E. Kinoshita, Fuel 87, 1014 (2008)

    CAS  Google Scholar 

  8. Q. Xie, P. Chen, P. Peng, S. Liu, P. Peng, B. Zhang, Y. Cheng, Y. Wan, Y. Liu, R. Ruan, RSC Adv. 5, 26301 (2015)

    CAS  Google Scholar 

  9. Z. Azizi, M. Rezaeimanesh, T. Tohidian, M. Rahimpour, Chem. Eng. Process. 82, 150 (2014)

    CAS  Google Scholar 

  10. J. Xia, D. Mao, B. Zhang, Q. Chen, Y. Tang, Catal. Lett. 98, 235 (2004)

    CAS  Google Scholar 

  11. Z. Gao, W. Huang, L. Yin, L. Hao, K. Xie, Catal. Lett. 127, 354 (2008)

    Google Scholar 

  12. S. Allahyari, M. Haghighi, A. Ebadi, S. Hosseinzadeh, Ultrason. Sonochem. 21, 663 (2014)

    CAS  PubMed  Google Scholar 

  13. R. Khoshbin, M. Haghighi, Chem. Eng. Res. Des. 91, 1111 (2013)

    CAS  Google Scholar 

  14. F. Trippe, M. Fröhling, F. Schultmann, R. Stahl, E. Henrich, A. Dalai, Fuel Process. Technol. 106, 577 (2013)

    CAS  Google Scholar 

  15. S. Lee, A. Sardesai, Top. Catal. 32, 197 (2005)

    CAS  Google Scholar 

  16. H. Venvik, J. Yang, Catal. Today 285, 135 (2017)

    CAS  Google Scholar 

  17. A. García-Trenco, A. Vidal-Moya, A. Martínez, Catal. Today 179, 43 (2012)

    Google Scholar 

  18. M. Huang, H. Lee, K. Liang, C. Tzeng, W. Chen, Int. J. Hydrogen Energy 40, 13583 (2015)

    CAS  Google Scholar 

  19. A. García-Trenco, A. Martínez, Appl. Catal. A-Gen. 411–412, 170 (2012)

    Google Scholar 

  20. T. Semelsberger, R. Borup, H. Greene, J. Power Sources 156, 497 (2006)

    CAS  Google Scholar 

  21. D. Liu, X. Hua, D. Fang, J. Nat. Gas Chem. 16, 193 (2007)

    Google Scholar 

  22. S. Ahn, S. Kim, H. Hahm, Res. Chem. Intermed. 34, 793 (2008)

    CAS  Google Scholar 

  23. D. Jin, B. Zhu, Z. Hou, J. Fei, H. Lou, X. Zheng, Fuel 86, 2707 (2007)

    CAS  Google Scholar 

  24. S. Asthana, C. Samanta, R. Voolapalli, B. Saha, J. Mater. Chem. A 5, 2649 (2017)

    CAS  Google Scholar 

  25. T. Ogawa, N. Inoue, T. Shikada, Y. Ohno, J. Nat. Gas Chem. 12, 219 (2003)

    Google Scholar 

  26. F. Ramos, A. Farias, L. Borges, J. Monteiro, M. Fraga, E. Aguiar, L. Appel, Catal. Today 101, 39 (2005)

    CAS  Google Scholar 

  27. L. Wang, Y. Qi, Y. Wei, D. Fang, S. Meng, Z. Liu, Catal. Lett. 106, 61 (2006)

    CAS  Google Scholar 

  28. J. Palgunadi, I. Yati, K. Jung, React. Kinet. Mech. Catal. 101, 117 (2010)

    CAS  Google Scholar 

  29. D. Kim, S. Lee, J. Lee, Y. Choi, J. Shin, J.K. Lee, Res. Chem. Intermed. 42, 249 (2015)

    Google Scholar 

  30. X. Peng, A. Wang, B. Toseland, P. Tijm, Ind. Eng. Chem. Res. 38, 4381 (1999)

    CAS  Google Scholar 

  31. K. Saravanan, H. Ham, N. Tsubaki, J. Bae, Appl. Catal. B Environ. 217, 494 (2017)

    CAS  Google Scholar 

  32. A. García-Trenco, A. Martínez, Appl. Catal. A Gen. 493, 40 (2015)

    Google Scholar 

  33. J. Sun, G. Yang, Q. Ma, I. Ooki, A. Taguchi, T. Abe, Q. Xie, Y. Yoneyama, N. Tsubaki, J. Mater. Chem. A 2, 8637 (2014)

    CAS  Google Scholar 

  34. A. Said, M. El-Wahab, M. El-Aal, Res. Chem. Intermed. 42, 1537 (2015)

    Google Scholar 

  35. H. Ham, J. Kim, S. Cho, J. Choi, D. Moon, J. Bae, ACS Catal. 6, 5629 (2016)

    CAS  Google Scholar 

  36. J. Li, X.G. Zhang, T. Inui, Appl. Catal. A Gen. 147, 23 (1996)

    CAS  Google Scholar 

  37. J. Jeong, C. Ahn, D. Lee, S. Um, J. Bae, Catal. Lett. 143, 666 (2013)

    CAS  Google Scholar 

  38. J. Flores, D. Peixoto, L. Appel, R. Avillez, M. Silva, Catal. Today 172, 218 (2011)

    CAS  Google Scholar 

  39. D. Sung, Y. Kim, E. Park, J. Yie, Res. Chem. Intermed. 36, 653 (2010)

    CAS  Google Scholar 

  40. T. Takeguchi, K. Yanagisawa, T. Inui, M. Inoue, Appl. Catal. A Gen. 192, 201 (2000)

    CAS  Google Scholar 

  41. J. Bae, S. Kang, Y. Lee, K. Jun, Appl. Catal. B Environ. 90, 426 (2009)

    CAS  Google Scholar 

  42. M. Biesinger, L. Lau, A. Gerson, R. Smart, Appl. Surf. Sci. 257, 887 (2010)

    CAS  Google Scholar 

  43. D. Tahir, S. Tougaard, J. Phys. Condens. Mater. 24, 175002 (2012)

    Google Scholar 

  44. J. Yuan, J. Zhang, M. Yang, W. Meng, H. Wang, J. Lu, Catalysts 8, 171 (2018)

    CAS  Google Scholar 

  45. S. Goh, A. Buckley, R. Lamb, R. Rosenberg, D. Moran, Geochim. Cosmochim. Acta 70, 2210 (2006)

    CAS  Google Scholar 

  46. S. Poulston, P. Parlett, P. Stone, M. Bowker, Surf. Interface Anal. 24, 811 (1996)

    CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (21902029) and Foundation of State Key Laboratory of Coal Conversion (No. J19-20-612).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Li or Li Tan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, C., Fang, Y., Luo, Z. et al. Direct dimethyl ether synthesis over mesoporous Cu–Al2O3 catalyst via CO hydrogenation. Res Chem Intermed 45, 5863–5876 (2019). https://doi.org/10.1007/s11164-019-04006-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-019-04006-9

Keywords

Navigation