Skip to main content
Log in

In situ infrared approach to unravel reaction intermediates and pathways on catalyst surfaces

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Reaction intermediates on catalyst surfaces have often been elucidated on the basis of ex situ observation of adsorbed species and theoretical computations because of the difficulty in carrying out in situ studies, and the elusive nature of the intermediates under reaction conditions. In the past few decades, we have developed an in situ infrared spectroscopic method coupled with mass spectrometry (IR/MS setup) for investigating reaction intermediates for a number of catalytic reactions: CO/H2, CO/H2/C2H4, NO/CO, NO decomposition, CO2/CH3OH, and photocatalytic reactions. This review presents the key features of using an IR/MS experimental setup to perform transient studies. Transient studies involve perturbing the reaction system and monitoring the responses. This review highlights the usefulness of transient response data to unravel the reaction intermediates and pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: SciFinder. keywords: IR + adsorb + CO, IR + adsorb + CO2

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Scheme 2
Fig. 8

Similar content being viewed by others

References

  1. M.W. Balakos, S.S.C. Chuang, J. Catal. 151, 2 (1995)

    Google Scholar 

  2. D.D. Miller, S.S.C. Chuang, J. Phys. Chem. C 113, 33 (2009)

    Google Scholar 

  3. K. Almusaiteer, S.S.C. Chuang, J. Catal. 180, 2 (1998)

    Google Scholar 

  4. K.A. Almusaiteer, S.S.C. Chuang, J. Phys. Chem. B 104, 10 (2000)

    Google Scholar 

  5. H.S. Fogler, Elements of Chemical Reaction Engineering, 4th edn. (Pearson Education Inc, Upper Sadle River, 2006)

    Google Scholar 

  6. S.L. Shannon, J.G. Goodwin, Chem. Rev. 95, 3 (1995)

    Google Scholar 

  7. K.A. Almusaiteer, S.S.C. Chuang, C.-D. Tan, J. Catal. 189, 1 (2000)

    Google Scholar 

  8. B. Chen, S.S.C. Chuang, Green Chem. 5, 4 (2003)

    Google Scholar 

  9. Y. Chi, S.S.C. Chuang, J. Catal. 190, 1 (2000)

    Google Scholar 

  10. S.A. Hedrick, S.S.C. Chuang, K. Almusaiteer, R.W. Stevens, J. Phys. Chem. B 107, 20 (2003)

    Google Scholar 

  11. M.V. Konduru, S.S.C. Chuang, X. Kang, J. Phys. Chem. B 105, 44 (2001)

    Google Scholar 

  12. D.D. Miller, S.S.C. Chuang, J. Taiwan Inst. Chem. Eng. 40, 6 (2009)

    Google Scholar 

  13. D.D. Miller, S.S.C. Chuang, Catal. Commun. 10, 9 (2009)

    Google Scholar 

  14. R.W. Stevens, S.S.C. Chuang, J. Phys. Chem. B 108, 2 (2004)

    Google Scholar 

  15. S.S.C. Chuang, C.D. Tan, J. Catal. 173, 1 (1998)

    Google Scholar 

  16. M.A. Brundage, S.S.C. Chuang, S.A. Hedrick, Catal. Today 44, 1 (1998)

    Google Scholar 

  17. O. Lagunov, N. Drenchev, K. Chakarova, D. Panayotov, K. Hadjiivanov, Top. Catal. 60, 19 (2017)

    Google Scholar 

  18. C. Ledesma, J. Yang, D. Chen, A. Holmen, ACS Catal. 4, 12 (2014)

    Google Scholar 

  19. Z. Yu, S.S.C. Chuang, J. Phys. Chem. C 111, 37 (2007)

    Google Scholar 

  20. S.S.C. Chuang, M.A. Brundage, M.W. Balakos, G. Srinivas, Appl. Spectrosc. 49, 8 (1995)

    Google Scholar 

  21. C. Yang, C.W. Garland, J. Phys. Chem. 61, 11 (1957)

    Google Scholar 

  22. R.S. Dariani, A. Esmaeili, A. Mortezaali, S. Dehghanpour, Optik 127, 18 (2016)

    Google Scholar 

  23. M.W. Balakos, S.S.C. Chuang, G. Srinivas, M.A. Brundage, J. Catal. 157, 1 (1995)

    Google Scholar 

  24. S.S.C. Chuang, S.-I. Pien, J. Catal. 138, 2 (1992)

    Google Scholar 

  25. S.S.C. Chuang, S.I. Pien, J. Catal. 135, 2 (1992)

    Google Scholar 

  26. S.S.C. Chuang, S.-I. Pien, R. Narayanan, Appl. Catal. 57, 1 (1990)

    Google Scholar 

  27. S.A. Hedrick, S.S.C. Chuang, A. Pant, A.G. Dastidar, Catal. Today 55, 3 (2000)

    Google Scholar 

  28. K. Almusaiteer, S.S.C. Chuang, J. Catal. 184, 1 (1999)

    Google Scholar 

  29. M.V. Konduru, S.S.C. Chuang, J. Catal. 187, 2 (1999)

    Google Scholar 

  30. M.V. Konduru, S.S.C. Chuang, J. Phys. Chem. B 103, 28 (1999)

    Google Scholar 

  31. R. Krishnamurthy, S.S.C. Chuang, M.W. Balakos, J. Catal. 157, 2 (1995)

    Google Scholar 

  32. G. Srinivas, S.S.C. Chuang, S. Debnath, J. Catal. 148, 2 (1994)

    Google Scholar 

  33. S.Q. Wang, Nonlinear Polymer Rheology: Macroscopic Phenomenology and Molecular Foundation (Wiley, Hoboken, 2018)

    Google Scholar 

  34. J. Ang, E. Harris, B.J. Hussey, R. Kil, D.R. McMillen, A.C.S. Synth, Biology 2, 10 (2013)

    Google Scholar 

  35. S.S.C. Chuang, F. Guzman, Top. Catal. 52, 10 (2009)

    Google Scholar 

  36. M.W. Balakos, S.S.C. Chuang, G. Srinivas, J. Catal. 140, 1 (1993)

    Google Scholar 

  37. M.A. Brundage, S.S.C. Chuang, J. Catal. 164, 1 (1996)

    Google Scholar 

  38. G. Srinivas, S.S.C. Chuang, M.W. Balakos, AlChE J. 39, 3 (1993)

    Google Scholar 

  39. C. Shi, K. Chan, J.S. Yoo, J.K. Nørskov, Org. Process Res. Dev. 20, 8 (2016)

    Google Scholar 

  40. R.S. Drago, Physical Methods in Chemistry (W.B Saunders Company, West Washington Square, 1977)

    Google Scholar 

  41. S. Coluccia, L. Marchese, G. Martra, Res. Chem. Intermed. 26, 1 (2000)

    CAS  Google Scholar 

  42. B. Liu, C. Li, G. Zhang, X. Yao, S.S.C. Chuang, Z. Li, ACS Catal. 8, 11 (2018)

    Google Scholar 

  43. A. Davydov, Molecular Spectroscopy of Oxide Catalyst Surfaces (Wiley, Hoboken, 2003)

    Google Scholar 

  44. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds: Part A: Theory and Applications in Inorganic Chemistry, 6th edn. (Wiley, Hoboken, 2008)

    Google Scholar 

  45. J. Liu, P. Winwarid, T.C.K. Yang, S.S.C. Chuang, PCCP 20, 29 (2018)

    CAS  Google Scholar 

  46. X. Lu, S. Xie, H. Yang, Y. Tong, H. Ji, Chem. Soc. Rev. 43, 22 (2014)

    Google Scholar 

  47. Y. Ma, X. Wang, Y. Jia, X. Chen, H. Han, C. Li, Chem. Rev. 114, 19 (2014)

    Google Scholar 

  48. J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Chem. Rev. 114, 19 (2014)

    Google Scholar 

  49. Q. Wang, K. Domen, Chem. Rev. (2019). https://doi.org/10.1021/acs.chemrev.9b00201

  50. M. Anpo, J. CO2 Util. 1, 8 (2013)

    CAS  Google Scholar 

  51. M. Anpo, N. Aikawa, Y. Kubokawa, J. Phys. Chem. 88, 18 (1984)

    Google Scholar 

  52. T. Boningari, S.M. Pavani, P.R. Ettireddy, S.S.C. Chuang, P.G. Smirniotis, Mol. Catal. 451, 33 (2018)

    CAS  Google Scholar 

  53. Y. Zhai, S.S.C. Chuang, Org. Process Res. Dev. 22, 12 (2018)

    Google Scholar 

  54. F. Guzman, S.S.C. Chuang, C. Yang, Ind. Eng. Chem. Res. 52, 1 (2013)

    Google Scholar 

  55. Y. Yoshida, M. Matsuoka, S.C. Moon, H. Mametsuka, E. Suzuki, M. Anpo, Res. Chem. Intermed. 26, 6 (2000)

    Google Scholar 

  56. F. Guzman, S.S.C. Chuang, J. Am. Chem. Soc. 132, 5 (2010)

    Google Scholar 

  57. J. Liu, L. Zhang, X. Yao, S.S.C. Chuang, Res. Chem. Intermed. 43, 9 (2017)

    Google Scholar 

  58. D.A. Panayotov, S.P. Burrows, J.R. Morris, J. Phys. Chem. C 116, 7 (2012)

    Google Scholar 

  59. A. Rismanchian, Y.-W. Chen, S.S.C. Chuang, Catal. Today 264, 16 (2016)

    CAS  Google Scholar 

  60. Z. Yu, S.S.C. Chuang, J. Catal. 246, 1 (2007)

    Google Scholar 

  61. Z. Yu, S.S.C. Chuang, Appl. Catal. B Environ. 83, 3 (2008)

    Google Scholar 

  62. M. Anpo, S.C. Moon, K. Chiba, G. Martra’s, S. Coluccia, Res. Chem. Intermed. 19, 6 (1993)

    Google Scholar 

  63. T. Takata, G. Hitoki, J.N. Kondo, M. Hara, H. Kobayashi, K. Domen, Res. Chem. Intermed. 33, 1 (2007)

    Google Scholar 

  64. M. Anpo, S. Kishiguchi, Y. Ichihashi, M. Takeuchi, H. Yamashita, K. Ikeue, B. Morin, A. Davidson, M. Che, Res. Chem. Intermed. 27, 4 (2001)

    Google Scholar 

  65. P. Ji, M. Takeuchi, T.-M. Cuong, J. Zhang, M. Matsuoka, M. Anpo, Res. Chem. Intermed. 36, 4 (2010)

    CAS  Google Scholar 

  66. R.J. Tayade, T.S. Natarajan, H.C. Bajaj, Ind. Eng. Chem. Res. 48, 23 (2009)

    Google Scholar 

  67. J. Tschirch, R. Dillert, D. Bahnemann, B. Proft, A. Biedermann, B. Goer, Res. Chem. Intermed. 34, 4 (2008)

    Google Scholar 

  68. F.C. ISO/TC 206, (2010-09)

  69. A. Mills, Appl. Catal. B Environ. 128, 1 (2012)

    Google Scholar 

  70. S.A. Hedrick, S.S.C. Chuang, Thermochim. Acta 315, 2 (1998)

    Google Scholar 

  71. A. Modjtahedi, N. Hedayat, S.S.C. Chuang, Catal. Today 278, 227 (2016)

    CAS  Google Scholar 

  72. B. Chen, S.S.C. Chuang, J. Mol. Catal. A: Chem. 195, 1 (2003)

    Google Scholar 

  73. R.W. Stevens, S.S.C. Chuang, B.H. Davis, Thermochim. Acta 407, 1 (2003)

    Google Scholar 

  74. S.-I. Pien, S.S.C. Chuang, J. Mol. Catal. 68, 3 (1991)

    Google Scholar 

  75. K.D. Dobson, A.D. Roddick-Lanzilotta, A.J. McQuillan, Vib. Spectrosc. 24, 2 (2000)

    Google Scholar 

  76. N.B.D. Colthup, H. Lawrence, S.E. Wiberley, Introduction to Infrared and Raman Spectroscopy, 3rd edn. (Academic Press Limited, London, 1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven S. C. Chuang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

King, J., Liu, C. & Chuang, S.S.C. In situ infrared approach to unravel reaction intermediates and pathways on catalyst surfaces. Res Chem Intermed 45, 5831–5847 (2019). https://doi.org/10.1007/s11164-019-04004-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-019-04004-x

Keywords

Navigation