Skip to main content
Log in

Coordination compounds of heterocyclic bases: synthesis, characterization, computational and biological studies

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

In this study, the geometry, spectroscopic characteristics and coordination patterns of three biologically active ligands and their Co(II) and Pd(II) complexes were explored using both experimental and theoretical techniques. The heterocyclic ligands (HL1–HL3) were synthesized by condensation reactions of 2-amino-6-methoxybenzothiazole with 2-hydroxy-1,4-naphthoquinone (1), 2-hydroxynaphthaldehyde (2) and 2-hydroxy-3-methoxybenzaldehyde (3). Co(II) and Pd(II) complexes of the ligands were subsequently synthesized and characterized using spectroscopic techniques, magnetic, conductance measurement and elemental analysis. The results of the spectroscopic analysis showed that the coordination of HL1 to the metal ions was through the oxygen atom of one of the carbonyl groups and the nitrogen atom of the deprotonated amine group. However, HL2 and HL3 were coordinated to the metal ions through the nitrogen atom of the azomethine group and the oxygen atom of the deprotonated hydroxyl group, resulting in N, O chromophores around the central metal ions. The magnetic moment and electronic spectra results of the metal complexes were consistent with the adoption of square planar geometry for the palladium(II) complexes and octahedral geometry for the cobalt(II) complexes. The compounds displayed good antibacterial activity against some clinically isolated bacterial strains of Escherichia coli, Klebsiella pneumonia, Pseudomonas aeruginosa, Staphylococcus aureus and Bacillus cereus. Molecular docking studies gave possible molecular targets of the various bacterial cells by the compounds. In most cases, the new compounds showed better molecular binding interactions than the crystallographic inhibitors. The antioxidant potentials of the ligands were evaluated using DPPH radical scavenging and ferrous ion chelating assays. The Fe(II) ion chelating potentials of the ligands were in the order HL3 < HL2 < HL1, with IC50 of 85 µg/mL, 69 µg/mL and 41 µg/mL, respectively. Similarly, the DPPH radical scavenging capacity of the ligands were in the descending order of HL1 > HL2 > HL3 with an IC50 of 35 µg/mL, 56 µg/mL and 96 µg/mL, respectively. The compounds could be important constituents in the synthesis or development of antibiotics and antioxidant drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Boyd, A. Bhattacharjee, Organic Chemistry, 7th edn. (Pearson Education, New Delhi, 2010)

    Google Scholar 

  2. K. Salat, A. Moniczewski, T. Librowski, Mini. Rev. Med. Chem. 13, 335 (2013)

    CAS  PubMed  Google Scholar 

  3. D.K. Jangid, A. Guleria, S. Dhadda, K. Yadav, P.G. Goswami, C.L. Khandelwa, Int. J. Pharm. Sci. Res. 8, 2960 (2017)

    CAS  Google Scholar 

  4. T. Eicher, S. Hauptmann, A. Speicher, The Chemistry of Heterocycles: Structure, Reactions, Syntheses and Applications, 2nd edn. (Wiley-VCH, Weinheim, 2003)

    Book  Google Scholar 

  5. B. Chen, W. Heal, in Comprehensive Heterocyclic Chemistry III, ed. by A.R. Katritzky, C.A. Ramsden, E.F.V. Scriven, R.J.K. Taylor (Elsevier (Incl Pergamon), Amsterdam, 2008)

    Google Scholar 

  6. P.M. Chatrabhuji, K.S. Nimavat, K.B. Vyas, N.K. Undavia, RJPBCS 1, 451 (2010)

    CAS  Google Scholar 

  7. P.C. Sharma, A. Sinhmar, A. Sharma, H. Rajak, D.P. Pathak, J. Enzyme Inhib. Med. Chem. 28, 240 (2013)

    Article  PubMed  Google Scholar 

  8. A.R. Ali, N. Siddiqui, J. Chem. 2013, Article ID 345198 (2013)

  9. A.M. Siddiqui, M. Khazaei, M.G. Fehlings, Prog. Brain Res. 218, 15 (2015)

    Article  PubMed  Google Scholar 

  10. A.C. Ekennia, A.A. Osowole, D.C. Onwudiwe, I. Babahan, C.U. Ibeji, S.N. Okafor, O.T. Ujam, Appl. Organom. Chem. 32, 4310 (2018)

    Article  CAS  Google Scholar 

  11. A.A. Osowole, A.C. Ekennia, B.O. Achugbu, A.A. Osowole, A.C. Ekenia, B.O. Achugbu, Res. Rev. J. Pharm. Anal. 2, 1 (2013)

    Google Scholar 

  12. A.S. El-Tabl, M.M. Abd El-Waheed, M.A. Wahba, N.A.A. El-Fadl, Bioinorg. Chem. Appl. 2015, 126023 (2015). https://doi.org/10.1155/2015/126023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. N. Feizi, R.V. Pinjari, S. Gejji, F. Sayyed, R. Gonnade, S.Y. Rane, J. Mol. Struct. 8, 144 (2010)

    Article  CAS  Google Scholar 

  14. L. Kathawate, P.V. Joshi, T.K. Dash, S. Pal, M. Nikalje, T. Weyhermüller, V.G. Puranik, B. Konkimalla, S.S. Gawali, J. Mol. Struct. 9, 397 (2014)

    Article  CAS  Google Scholar 

  15. W.A. Al-Masoudi, R.M. Othman, R.H. Al-Asadi, M.A. Ali, Bas. J. Vet. Res. 15, 304 (2016)

    Google Scholar 

  16. A.C. Ekennia, D.C. Onwudiwe, C. Ume, E.E. Ebenso, Bioinorg. Chem. Appl. 2015, 913424 (2015). https://doi.org/10.1155/2015/913424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. A.C. Ekennia, D.C. Onwudiwe, A.A. Osowole, L.O. Olasunkanmi, E.E. Ebenso, J. Chem. 2016, 5129010 (2016). https://doi.org/10.1155/2016/5129010

    Article  CAS  Google Scholar 

  18. A.A. Osowole, A.C. Ekennia, O.O. Olubiyi, M. Olagunju, Res. Chem. Intermed. 43, 2565 (2017)

    Article  CAS  Google Scholar 

  19. I. Georgieva, N. Trendafilova, J. Phys. Chem. A 111, 13075 (2007)

    Article  CAS  PubMed  Google Scholar 

  20. D.P. Timothy, P.N. David, R.W. Guy, V.P. Vanessa, E.W. Brian, O.B. Brian, M.I. Tina, J. Biol. Chem. 286, 8043 (2011)

    Article  CAS  Google Scholar 

  21. L. Chen, T. Liu, C. Ma, J. Phys. Chem. A 114, 443 (2010)

    Article  CAS  PubMed  Google Scholar 

  22. C.M. Tan, A.G. Therien, J. Lu, S.H. Lee, A. Caron, C.J. Gill, C. Lebeau-Jacob, L. Benton-Perdomo, J.M. Monteiro, P.M. Pereira, N.L. Elsen, J. Wu, K. Deschamps, M. Petcu, S. Wong, E. Daigneault, S. Kramer, L. Liang, E. Maxwell, D. Claveau, J. Vaillancourt, K. Skorey, J. Tam, H. Wang, T.C. Meredith, S. Sillaots, L. Wang-Jarantow, Y. Ramtohul, E. Langlois, F. Landry, J.C. Reid, G. Parthasarathy, S. Sharma, A. Baryshnikova, K.J. Lumb, M.G. Pinho, S.M. Soisson, T. Roemer, Sci. Transl. Med. 4, 635 (2012)

    Google Scholar 

  23. S.I. Gorelsky, L. Basumallick, J. Vura-Weis, R. Sarangi, K.O. Hodgson, B. Hedman, K. Fujisawa, E. Solomon, Inorg. Chem. 44, 4947 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. G. Nicola, J. Tomberg, R.F. Pratt, R.A. Nicholas, C. Davie, Biochemistry 49, 8094 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. V. Karunakaran, V. Balachandran, Spectrochim. Acta 98A, 229 (2012)

    Article  CAS  Google Scholar 

  26. W. Brands-williams, M.E. Cuvelier, C. Berset, L. Wiss, LWT-Food Sci. Technol. 18, 25 (1995)

    Article  Google Scholar 

  27. M. Malhotra, R.K. Rawal, D. Malhotra, R. Dhingra, A. Deep, P.C. Sharma, Arab. J. Chem. 10, S1022 (2017)

    Article  CAS  Google Scholar 

  28. M.A. Kremennaya, M.A. Soldatov, A.P. Budnyk, T.A. Lastovina, A.V. Soldatov, J. Struct. Chem. 57, 1348 (2016)

    Article  CAS  Google Scholar 

  29. P.A. Ajibade, G.A. Kolawole, P. O’Brien, M. Helliwell, J. Raftery, Inorg. Chim. Acta 359, 3111 (2006)

    Article  CAS  Google Scholar 

  30. A.C. Ekennia, A.A. Osowole, L.O. Olasunkanmi, D.C. Onwudiwe, O.O. Olubiyi, E.E. Ebenso, J. Mol. Struct. 1150, 279 (2017)

    Article  CAS  Google Scholar 

  31. A.A. Osowole, I. Ott, O.M. Ogunlana, Int. J. Inorg. Chem. 2012, 206417 (2012). https://doi.org/10.1155/2012/206417

    Article  CAS  Google Scholar 

  32. D.C. Onwudiwe, A.C. Ekennia, B.M.S. Mogwase, O.O. Olubiyi, E. Hosten, Inorg. Chim. Acta 450, 69 (2016)

    Article  CAS  Google Scholar 

  33. A. Choudhary, R. Sharma, M. Nagar, M. Mohsin, J. Enzyme Inhib. Med. Chem. 26, 394 (2011)

    Article  CAS  PubMed  Google Scholar 

  34. M.G. Abd El-Wahed, M.S. Refat, S.M. El-Meghharbel, J. Mol. Struct. 888, 416 (2008)

    Article  CAS  Google Scholar 

  35. I.P. Ejidike, P.A. Ajibade, Molecules 20, 9788 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. W.J. Geary, Coord. Chem. Rev. 7, 81 (1971)

    Article  CAS  Google Scholar 

  37. A.A. Al-Amiery, A.A.H. Kadhum, A.B. Mohamad, Bioinorg. Chem. Appl. 2012, 795812 (2012). https://doi.org/10.1155/2012/795812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. T.M.A. Alves, A.F. Silva, M. Brandão, T.S. Grandi, E. Smânia, A. Smânia Júnior, C.L. Zani, Memórias do Instituto Oswaldo Cruz. 95, 367 (2000)

    Article  CAS  PubMed  Google Scholar 

  39. A.C.O. Silva, E.F. Santana, A.M. Saraiva, F.N. Coutinho, R.H.A. Castro, M.N.C. Pisciottano, E.L.C. Amorim, U.P. Albuquerque, Evid. Based Complement. Alternat. Med. 2013, 308980 (2013). https://doi.org/10.1155/2013/308980

    Article  PubMed  PubMed Central  Google Scholar 

  40. F. Chioma, A.C. Ekennia, A.A. Osowole, S.N. Okafor, C.U. Ibeji, D.C. Onwudiwe, T.U. Oguejiofo, Open Chem. 16, 184 (2018)

    Article  CAS  Google Scholar 

  41. M.E. De-Leo, A. Tranghee, M. Passantino, A. Mordente, M.M. Lizzio, T. Galeotti, A. Zoli, J. Rheumatol. 29, 2245 (2002)

    PubMed  Google Scholar 

  42. M. Frisch, G. Trucks, H.B. Schlegel, J.F. Douglas, Gaussian 09 Revision A.02 (Gaussian Inc, Wallingford, 2009)

    Google Scholar 

  43. J.P. Fackler, L.R. Falvello, Techniques in Inorganic Chemistry (CRC Press, Taylor & Francis Group, Boca Raton, 2010)

    Book  Google Scholar 

  44. I.G. Csizmadia, Theory and Practice of MO Calculations on Organic Molecules (Elsevier, Amsterdam, 1976)

    Google Scholar 

  45. J. Zevallos, A. Toro-Labbé, J. Chilean Chem. Soc. 48, 39 (2003)

    Article  CAS  Google Scholar 

  46. J.M.F. Custodio, E.C.M. Faria, L.O. Sallum, V.S. Duarte, W.F. Vaz, G.L.B. de Aquino, P.S. Carvalho, H.B. Napolitano, J. Braz. Chem. Soc. 28, 2180 (2017)

    CAS  Google Scholar 

  47. F. Cuenú, J. Londoño-Salazar, J.E. Torres, R. Abonia, R.F. D’vries, J. Mol. Struct. 1152, 163 (2018)

    Article  CAS  Google Scholar 

  48. T. Koopmans, Physica 1, 104 (1934)

    Article  Google Scholar 

  49. R.S. Mulliken, J. Chem. Phys. 23, 1833 (1955)

    Article  CAS  Google Scholar 

  50. P. Senet, Chem. Phys. Lett. 275, 527 (1997)

    Article  CAS  Google Scholar 

  51. R.G. Pearson, J. Am. Chem. Soc. 107, 6801 (1985)

    Article  CAS  Google Scholar 

  52. R.G. Parr, L.V. Szentpaly, S. Liu, J. Am. Chem. Soc. 121, 1922 (1999)

    Article  CAS  Google Scholar 

  53. B.J. Powell, T. Baruah, N. Bernstein, K. Brake, R.H. McKenzie, P. Meredith, M.R. Pederson, J. Chem. Phys. 120, 8608 (2004)

    Article  CAS  PubMed  Google Scholar 

  54. C.H. Choi, M. Kertesz, J. Phys. Chem. A 101, 3823 (1997)

    Article  CAS  Google Scholar 

  55. A. Eşme, S.G. Sağdınç, Spectrochim. Acta 188A, 443 (2018)

    Google Scholar 

  56. T.K. Kuruvilla, J.C. Prasana, S. Muthu, J. George, S.A. Mathew, Spectrochim. Acta 188A, 382 (2018)

    Article  CAS  Google Scholar 

  57. İ. Sıdır, Y.G. Sıdır, M. Kumalar, E. Taşal, J. Mol. Struct. 964, 134 (2010)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damian C. Onwudiwe.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 586 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ekennia, A.C., Onwudiwe, D.C., Osowole, A.A. et al. Coordination compounds of heterocyclic bases: synthesis, characterization, computational and biological studies. Res Chem Intermed 45, 1169–1205 (2019). https://doi.org/10.1007/s11164-018-3664-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-018-3664-x

Keywords

Navigation