Skip to main content
Log in

Synthesis, characterization and biological activity of mixed ligands complexes of quinolin-8-ol and substituted chromones with Mn(II), Co(II), Ni(II) and Cu(II) metal ions

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The mixed ligand complexes were synthesized using quinolin-8-ol and substituted chromone derivative with transition metals like Mn(II), Cu(II), Ni(II) and Co(II). These complexes were characterized using elemental analysis by electron dispersive spectroscopy, Fourier transforms infrared, ultraviolet–visible, proton nuclear magnetic resonance, liquid chromatography coupled with mass spectrometry, electron spin resonance spectra, magnetic susceptibility, powder X-ray diffraction, thermogravimetric analysis and scanning electron microscopy. The complexes were screened by biological activities such as antioxidant activity by 2, 2-Diphenyl-1-picrylhydrazyl, antimicrobial activity by the agar well-diffusion method and anticancer activity by yellow tetrazolium (3-(4, 5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide methods. The synthesis of mixed ligand complexes were synthesized by using homoleptic complexes of respective metal complexes of chromones. The FTIR spectra show νM–O the νM–N frequencies are obtained at 515–645 cm−1 and 431–496 cm− 1 respectively. The NMR spectra of Ni(II) complexes were indicating the complexes are paramagnetic in nature. The ESR spectra of copper complexes shows singlet signal, and they indicate that the copper has 2 + oxidation state in complexes. The complexes showed a well-defined crystal system indicated by powder-X-ray diffraction patterns. The thermogram studies show formation of metal oxides residues at the end product of decomposition of complexes. The scanning electron microscope showed complexes were nanocrystalline in nature. The mixed ligand complex of Ni(II) shows 80.73% antioxidant activity as compared to both the ligands and other metal complexes. The antibacterial activity result obtained clearly showed that all complexes were effective against all the microorganisms of Staphylococcus aures, Bacillus subtilis, Escherichia coli and Pseudomonas aeruginos. The inhibition of the cancerous cell is more the case of Ni (II) complexes as compared with other complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. N.S. Youssef, K.H. Hegab, A.E. Eid, Synth. React. Inorg. Metal-Org. Chem. 37, 1647 (2007)

    Google Scholar 

  2. Z.H. Chohan, M.S. Iqbal, S.K. Aftab, J. Enz. Inhib. Med. Chem. 47, 223 (2010)

    Google Scholar 

  3. C.M.M. Santos, V.L.M. Silva, A.M.S. Silva, Molecules 22, 1665 (2017)

    PubMed Central  Google Scholar 

  4. D.E. Nichols, C.F. Barfknecht, D.B. Rusterholz, F. Benington, R.D. Morin, J. Med. Chem. 16, 480 (1973)

    CAS  PubMed  Google Scholar 

  5. C.M.M. Santos, A.M.S. Silva, A. Lévai, ARKIVOC. 2012, 265 (2012)

    Google Scholar 

  6. L. Lei, Y. Xue, Z. Liu, S. Peng, Y. He, Y. Zhang, R. Fang, Sci. Rep. 5(1), 1 (2015)

    CAS  Google Scholar 

  7. D. Hyuk, K. Yong, C. Sang, Y. Sup, Eur. J. Med. Chem. 45, 4288 (2010)

    Google Scholar 

  8. A. Novel, Tetrahedron Lett. 13, 1183 (1974)

    Google Scholar 

  9. E.R. Jamieson, S.J. Lippard, Chem. Rev. 99, 2467 (1999)

    CAS  Google Scholar 

  10. D.M. Boghaei, S.J.S. Sabounchei, Synth. React. Inorg. Metal-Org. Chem. 30(8), 1535 (2000)

    CAS  Google Scholar 

  11. B. Wang, Z.-Y. Yang, M. Lü, J. Hai, Q. Wang, Z.-N. Chen, J. Organomet. Chem. 694, 4069 (2009)

    CAS  Google Scholar 

  12. I. Tinoco, Annu. Rev. Phys. Chem. 53, 1 (2002)

    CAS  PubMed  Google Scholar 

  13. P. Jayaseelan, S. Prasad, S. Vedanayaki, R. Rajavel, Int. J. Pharmac. Res. Synth. 1, 80 (2010)

    CAS  Google Scholar 

  14. A. Dziewulska-ku, J. Therm. Anal. Calorim. 101, 1019 (2010)

    Google Scholar 

  15. J. Wiley, Special Trends Therm. Anal. 45, 1605 (1995)

    Google Scholar 

  16. M. Patil, R. Hunoor, K. Gudasi, Eur. J. Med. Chem. 45, 2981 (2010)

    CAS  PubMed  Google Scholar 

  17. Vilsmeier Haack, Aus d. Chem. Laborat. d. Universitat Erlangen 119(16), 4 (1926)

    Google Scholar 

  18. O. Meth-cohn, B. Tarnowski, A. Heterocycl. Chem. 31, 207 (1982)

    CAS  Google Scholar 

  19. K. Fries, G. Finck, Chem. Ber. 41(3), 4271 (1908)

    CAS  Google Scholar 

  20. G. Jones, S.P. Stanforth, Org. React. 56(2), 355 (2000)

    CAS  Google Scholar 

  21. S. Khan, W. Ahmad, K. Munawar, S. Kanwal, Indian J. Pharm. Sci. 80(3), 480 (2018)

    Google Scholar 

  22. S.A. Khan, S. Shahid, W. Ahmad, U. Fatima, S. Knawal, Indian J Pharm Sci. 80(1), 173 (2018)

    Google Scholar 

  23. T. Mosmann, J. Immunol. Methods 65, 55 (1983)

    CAS  Google Scholar 

  24. S. Basak, S. Sen, S. Mitra, C. Marschner, W.S. Sheldrick, Struct. Chem. 19, 115 (2008)

    CAS  Google Scholar 

  25. K. Rizwan, N. Rasool, R. Rehman, T. Mahmood, K. Ayub, T. Rasheed, G. Ahmad, A. Malik, S.A. Khan, M.N. Akhtar, N.B. Alitheen, M. Nazirul, M. Aziz, Chem. Cent. J. 12, 84 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  26. M. Aslantaş, E. Kendi, N. Demir, A.E. Şabik, M. Tümer, M. Kertmen, Spectrochim Acta Part A Mol. Biomol. Spectrosc. 74, 617 (2009)

    Google Scholar 

  27. D.P. Singh, R. Kumar, V. Malik, Transit. Metal Chem. 32, 1051 (2007)

    CAS  Google Scholar 

  28. D.X. West, D.X. West, A.E. Liberta, Coord. Chem. Rev. 123, 49 (1993)

    CAS  Google Scholar 

  29. P. Kavitha, K. Laxma Reddy, Arab. J. Chem. 9(4), 596 (2016)

    CAS  Google Scholar 

  30. N. Ahmad, M. Alam, P. Kumar, A. Hashmi, R. Wahab, Asian J. Chem. 25(18), 10386 (2013)

    CAS  Google Scholar 

  31. F. Yakuphanoglu, I. Erol, Y. Aydogdu, M. Ahmedzade, Mater. Lett. 57, 229 (2002)

    CAS  Google Scholar 

  32. L.A. Saghatforoush, R. Mehdizadeh, F. Chalabian, J. Chem. Pharm. Res. 3(2), 691 (2011)

    CAS  Google Scholar 

  33. W. Ahmad, S.A. Khan, K.S. Munawar, Trop. J. Pharm. Res. 16(5), 1137 (2017)

    CAS  Google Scholar 

  34. M.A.R. Bhuiyan, M.Z. Hoque, S.J. Hossain, World J. Agric. Sci. 5(3), 318 (2009)

    Google Scholar 

  35. S.A. Khan, S. Shahid, S. Kanwal, G. Husaain, Dye. Pigment. 148(C), 31 (2017)

    Google Scholar 

  36. S.A. Khan, S. Shahid, S. Kanwal, K. Rizwan, T. Mahmood, K. Ayub, J. Mol. Struct. 1175(C), 73 (2018)

    Google Scholar 

  37. G. Hussain, S.A. Khan, F. Noreen, S. Kanwal, A. Iqbal, Mater. Sci. Eng. C 82(C), 46 (2017)

    Google Scholar 

Download references

Acknowledgements

The authors are very grateful to Principal Dr. Muktaja Mathkari, MES, Abasaheb Garware College, Pune and Principal Dr.B.H.Zaware, New Arts Commerce and Science College Ahmednagar for support and providing a laboratory facility. Authors are thankful to HOD, Prof. R.C.Chikate, MES, Abasaheb Garware College Pune for encouragement. Authors are thankful for BCUD, Savitribai Phule Pune University for providing funds under a minor research project (Project No. 14SCI000295).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitin H. Kolhe.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 3975 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolhe, N.H., Jadhav, S.S. Synthesis, characterization and biological activity of mixed ligands complexes of quinolin-8-ol and substituted chromones with Mn(II), Co(II), Ni(II) and Cu(II) metal ions. Res Chem Intermed 45, 973–996 (2019). https://doi.org/10.1007/s11164-018-3656-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-018-3656-x

Keywords

Navigation