Research on Chemical Intermediates

, Volume 44, Issue 9, pp 5419–5438 | Cite as

Highly efficient adsorption behavior of benzoylthiourea functionalized graphene oxide with respect to the removal of Hg(II) from aqueous solutions: isothermal, kinetic and thermodynamic studies

  • Farnaz Movahedi
  • Hassan Masrouri
  • Hanieh Tayyebi


Graphene oxide (GO) was successfully functionalized with benzoylthiourea groups through a silanization reaction between hydroxyl groups on the surface of GO and N-((3-(triethoxysilyl)propyl)carbamothioyl)benzamide (CTBz). The synthesis and immobilization processes were characterized by FT-IR, XRD, CHN, TGA, SEM, TEM and BET. The CTBz-GO was rendered to sequestrate Hg(ΙΙ) from aqueous solution and exhibited a higher adsorption capacity compared to many other previous reports based on the ion exchange, electrostatic attractions, and specifically, metal-complexing capability of the CTBz moieties on the surface of GO. The effects of pH, contact time, temperature and initial concentration of specious metal were investigated to optimize the adsorption conditions. The adsorption kinetic data was described well using the pseudo-second-order model, and the equilibrium data fitted well to a Langmuir isotherm and followed the chemisorption mechanism. Furthermore, CTBz-GO exhibited much better selectivity towards Hg(II) over the other metal ions, and the maximum saturated adsorption capacity estimated from the Langmuir model was 950 mg/g at pH = 6.0, and T = 25 °C. The calculated thermodynamic parameters suggested that the adsorption process was endothermic and spontaneous. Moreover, the regeneration study using 2 mol/L nitric acid as a regeneration agent indicated high reusability, up to five cycles of activity.


Graphene oxide Benzoylthiourea Adsorption isotherm Kinetics and thermodynamics Mercury 


  1. 1.
    Y. Gao, Z. Shi, Z. Long, P. Wu, C. Zheng, X. Hou, Microchem. J. 103, 1 (2012)CrossRefGoogle Scholar
  2. 2.
    F. Raji, M. Pakizeh, Appl. Surf. Sci. 301, 568 (2014)CrossRefGoogle Scholar
  3. 3.
    L. Xiangjun, Q. Cui, B. Tao, C. Xiaohong, S. Dihua, Talanta 78, 253 (2009)CrossRefGoogle Scholar
  4. 4.
    M.M. Matlock, B.S. Howerton, D.A. Atwood, Ind. Eng. Chem. Res. 41, 1579 (2002)CrossRefGoogle Scholar
  5. 5.
    S.B. Yang, J. Hu, C.L. Chen, D.D. Shao, X.K. Wang, Environ. Sci. Technol. 45, 3621 (2011)CrossRefGoogle Scholar
  6. 6.
    K. Ranganathan, Carbon 41, 1087 (2003)CrossRefGoogle Scholar
  7. 7.
    A. Dubey, S. Shiwani, Int. J. Environ. Sci. Technol. 9, 15 (2012)CrossRefGoogle Scholar
  8. 8.
    P. Rama Devi, T. Gangaiah, G.R.K. Naidu, Anal. Chim. Acta 249, 533 (1991)CrossRefGoogle Scholar
  9. 9.
    M.L. Schlegel, A. Manceau, D. Chateigner, L. Charlet, J. Colloid Interf. Sci. 215, 140 (1999)CrossRefGoogle Scholar
  10. 10.
    S.K. Milonjic, M.R. Boškovic, T.S. Ceranic, Sep. Sci. Technol. 27, 1643 (1992)CrossRefGoogle Scholar
  11. 11.
    S. Dash, H. Chaudhuri, R. Gupta, U.G. Nair, A. Sarkar, Ind. Eng. Chem. Res. 56, 1461 (2017)CrossRefGoogle Scholar
  12. 12.
    M.K. Alomar, M.A. Alsaadi, M. Hayyan, S. Akib, M. Ibrahim, M.A. Hashim, Chemosphere 167, 44 (2017)CrossRefGoogle Scholar
  13. 13.
    F. Wang, L. Zhang, Y. Wang, X. Liu, S. Rohani, J. Lu, Appl. Surf. Sci. 420, 970 (2017)CrossRefGoogle Scholar
  14. 14.
    S.M. Maliyekkal, T.S. Sreeprasad, D. Krishnan, S. Kouser, A.K. Mishra, U.V. Waghmare, T. Pradeep, Small 9, 273 (2013)CrossRefGoogle Scholar
  15. 15.
    H. Chen, M.B. Muller, K.J. Gilmore, G.G. Wallace, D. Li, Adv. Mater. 20, 3557 (2008)CrossRefGoogle Scholar
  16. 16.
    J. Kim, J.L. Cote, F. Kim, W. Yuan, K.R. Shull, J. Huang, J. Am. Chem. Soc. 132, 8180 (2010)CrossRefGoogle Scholar
  17. 17.
    D. Li, M.B. Muller, S. Gilje, R.B. Kaner, G.G. Wallance, Nat. Nanotechnol. 3, 101 (2008)CrossRefGoogle Scholar
  18. 18.
    S. Park, R.S. Ruoff, Nat. Nanotechnol. 4, 217 (2009)CrossRefGoogle Scholar
  19. 19.
    Z. Wang, X. Zhang, X. Wu, J.G. Yu, X.Y. Jiang, Z.L. Wu, X. Hao, J. Sol-Gel. Sci. Technol. 82, 440 (2017)CrossRefGoogle Scholar
  20. 20.
    E. Coronado, J.R. Galán-Mascarós, C. Martí-Gastaldo, E. Palomares, J.R. Durrant, R. Vilar, M. Gratzel, M.K. Nazeeruddin, J. Am. Chem. Soc. 127, 12351 (2005)CrossRefGoogle Scholar
  21. 21.
    Q. Sun, B. Aguila, J. Perman, L.D. Earl, C.W. Abney, Y. Cheng, H. Wei, N. Nguyen, L. Wojtas, S. Ma, J. Am. Chem. Soc. 139, 2786 (2017)CrossRefGoogle Scholar
  22. 22.
    F.D. Sokolov, V.V. Brusko, N.G. Zabirov, R.A. Cherkasov, Curr. Org. Chem. 10, 27 (2006)CrossRefGoogle Scholar
  23. 23.
    D.A. Safin, M.G. Babashkina, M. Bolte, A. Klein, Phosphorus, Sulfur Silicon Relat. Elem. 185, 2426 (2011)CrossRefGoogle Scholar
  24. 24.
    W. Hummers, R. Offeman, J. Am. Chem. Soc. 80, 1339 (1958)CrossRefGoogle Scholar
  25. 25.
    H. Arslan, N. Külcü, U. Flörke, Transition Met. Chem. 28, 816 (2003)CrossRefGoogle Scholar
  26. 26.
    N. Li, M. Zheng, X. Chang, G. Ji, H. Lu, L. Xue, L. Pan, J. Cao, J. Solid State Chem. 184, 953 (2011)CrossRefGoogle Scholar
  27. 27.
    Y.H. Li, P. Zhang, Q. Du, X. Peng, T. Liu, Z. Wang, Y. Xia, W. Zhang, K. Wang, H. Zhu, D. Wu, J. Colloid Interf. Sci. 363, 348 (2011)CrossRefGoogle Scholar
  28. 28.
    T. Szabo, O. Berkesi, I. Dekany, Carbon 43, 3186 (2005)CrossRefGoogle Scholar
  29. 29.
    M. Mermoux, Y. Chabre, A. Rousseau, Carbon 29, 469 (1991)CrossRefGoogle Scholar
  30. 30.
    E.B. Mobofu, J.H. Clark, D.J. Macquarrie, Green Chem. 3, 23 (2001)CrossRefGoogle Scholar
  31. 31.
    H. Tamai, K. Shiraki, T. Shiono, H. Yasuda, J. Colloid Interf. Sci. 295, 299 (2006)CrossRefGoogle Scholar
  32. 32.
    X. Wang, J.C.C. Chan, Y.-H. Tseng, S. Cheng, Microporous Mesoporous Mater. 95, 57 (2006)CrossRefGoogle Scholar
  33. 33.
    N. Selvakumaran, S.W. Ng, E.R.T. Tiekink, R. Karvembu, Inorg. Chim. Acta 376, 278 (2011)CrossRefGoogle Scholar
  34. 34.
    L. Fuks, E. Gniazdowska, J. Mieczkowski, J. Narbutt, W. Starosta, M. Zasepa, J. Organomet. Chem. 689, 4751 (2004)CrossRefGoogle Scholar
  35. 35.
    R. Tan, C. Li, J. Luo, Y. Kong, W. Zheng, D. Yin, J. Catal. 298, 138 (2013)CrossRefGoogle Scholar
  36. 36.
    A. Lerf, H. He, M. Forster, J. Klinowski, J. Phys. Chem. B 102, 4477 (1998)CrossRefGoogle Scholar
  37. 37.
    Q. Zhang, W. Li, T. Kong, R. Su, N. Li, Q. Song, M. Tang, L. Liu, G. Cheng, Carbon 51, 164 (2013)CrossRefGoogle Scholar
  38. 38.
    L. Sun, H. Yu, B. Fugetsu, J. Hazard. Mater. 203, 101 (2012)CrossRefGoogle Scholar
  39. 39.
    Y. Niu, H. Liu, R. Qu, S. Liang, H. Chen, C. Sun, Y. Cui, Ind. Eng. Chem. Res. 54, 1656 (2015)CrossRefGoogle Scholar
  40. 40.
    J.D. Merifield, W.G. Davids, J.D. MacRae, A. Amirbahman, Water Res. 38, 3132 (2004)CrossRefGoogle Scholar
  41. 41.
    S.K. Das, A.R. Das, A.K. Guha, Environ. Sci. Technol. 41, 8281 (2007)CrossRefGoogle Scholar
  42. 42.
    S.T. Song, N. Saman, K. Johari, H. Mat, Ind. Eng. Chem. Res. 52, 13092 (2013)CrossRefGoogle Scholar
  43. 43.
    B. Xiao, K.M. Thomas, Langmuir 21, 3892 (2005)CrossRefGoogle Scholar
  44. 44.
    W. Bae, C.H. Wu, J. Kostal, A. Mulchandani, W. Chen, Appl. Environ. Microbiol. 69, 3176 (2003)CrossRefGoogle Scholar
  45. 45.
    R.J. Qu, Y. Zhang, W.W. Qu, C.M. Sun, J. Chen, Y. Ping, H. Chen, Y.Z. Niu, Chem. Eng. J. 219, 51 (2013)CrossRefGoogle Scholar
  46. 46.
    Y.S. Ho, G. McKay, Water Res. 34, 735 (2000)CrossRefGoogle Scholar
  47. 47.
    G.X. Zhao, J.X. Li, X.K. Wang, Chem. Eng. J. 173, 185 (2011)CrossRefGoogle Scholar
  48. 48.
    G. Blanchard, M. Maunaye, G. Martin, Water Res. 18, 1501 (1984)CrossRefGoogle Scholar
  49. 49.
    G. Crini, H.N. Peindy, F. Gimbert, C. Robert, Sep. Purif. Technol. 53, 97 (2007)CrossRefGoogle Scholar
  50. 50.
    T.K. Naiya, A.K. Bhattacharya, S. Mandal, S.K. Das, J. Hazard. Mater. 163, 1254 (2009)CrossRefGoogle Scholar
  51. 51.
    J. Weber, J.C. Morriss, J. Sanit. Eng. Div. 89, 31 (1963)Google Scholar
  52. 52.
    I. Langmuir, J. Am. Chem. Soc. 40, 1361 (1918)CrossRefGoogle Scholar
  53. 53.
    H. Freundlich, Z. Phys, Chem. 57, 385 (1906)Google Scholar
  54. 54.
    B.H. Hameed, J. Hazard. Mater. 154, 204 (2008)CrossRefGoogle Scholar
  55. 55.
    G.I. Danmaliki, T.A. Saleh, J. Clean. Prod. 117, 50 (2016)CrossRefGoogle Scholar
  56. 56.
    M.M. Dubinin, L.V. Radushkevich, Chem. Zentr. 1, 875 (1947)Google Scholar
  57. 57.
    H. Zheng, Y. Wang, Y. Zheng, H. Zhang, S. Liang, M. Long, Chem. Eng. J. 143, 117 (2008)CrossRefGoogle Scholar
  58. 58.
    C.L. Chen, X.K. Wang, Ind. Eng. Chem. Res. 45, 9144 (2006)CrossRefGoogle Scholar
  59. 59.
    C.B. Lopes, J.R. Oliveira, L.S. Rocha, D.S. Tavares, C.M. Silva, S.P. Silva, N. Hartog, A.C. Duarte, E. Pereira, Environ. Sci. Pollut. Res. 21, 2108 (2014)CrossRefGoogle Scholar
  60. 60.
    G.Z. Kyzas, N.A. Travlou, E.A. Deliyanni, Colloids Surf. B-Biointerf. 113, 467 (2014)CrossRefGoogle Scholar
  61. 61.
    C.J. Madadrang, H.K. Yun, G. Gao, N. Wang, J. Zhu, H. Feng, M. Gorring, M.L. Kasner, S. Hou, Appl. Mater. Interf. 4, 1186 (2012)CrossRefGoogle Scholar
  62. 62.
    L. Cui, Y. Wang, L. Gao, L. Hu, L. Yan, Q. Wei, B. Du, Chem. Eng. J. 281, 1 (2015)CrossRefGoogle Scholar
  63. 63.
    Z. Sui, Q. Meng, X. Zhang, R. Ma, B. Cao, J. Mater. Chem. 22, 8767 (2012)CrossRefGoogle Scholar
  64. 64.
    C. Chandra, K.S. Kim, Chem. Commun. 47, 3942 (2011)CrossRefGoogle Scholar
  65. 65.
    T.S. Sreeprasad, S.M. Maliyekkal, K.P. Lisha, T. Pradeep, J. Hazard. Mater. 186, 921 (2011)CrossRefGoogle Scholar
  66. 66.
    Y. Zhang, L. Yan, W. Xu, X. Guo, L. Cui, L. Gao, Q. Wei, B. Du, J. Mol. Liq. 191, 177 (2014)CrossRefGoogle Scholar
  67. 67.
    R.S. Vieira, M.M. Beppu, Water Res. 40, 1726 (2006)CrossRefGoogle Scholar
  68. 68.
    O. Hakami, Y. Zhang, C.J. Banks, Water Res. 46, 3913 (2012)CrossRefGoogle Scholar
  69. 69.
    J. Bao, Y. Fu, Z. Bao, Nanoscale Res. Lett. 8, 1 (2013)CrossRefGoogle Scholar
  70. 70.
    A.M. Muliwa, M.S. Onyango, A. Maity, A. Ochieng, Water Sci. Technol. 75, 2841 (2017)CrossRefGoogle Scholar
  71. 71.
    Z. Qu, L. Fang, D. Chen, H. Xu, N. Yan, Fuel 203, 128 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Farnaz Movahedi
    • 1
  • Hassan Masrouri
    • 2
  • Hanieh Tayyebi
    • 2
  1. 1.Department of Chemistry and Petrochemical EngineeringStandard Research InstituteKarajIran
  2. 2.Department of ChemistryPayame Noor UniversityTehranIran

Personalised recommendations